首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A fed-batch culture system with constant feeding (glucose 80 g L−1, 0.25 ml min−1) was used to study the influence of glucose on cell dry weight and exopolysaccharides production from submerged Tremella fuciformis spores in a 5-L stirred-tank bioreactor. The results showed that high levels of cell mass (9.80 g L−1) and exopolysaccharides production (3.12 g L−1) in fed-batch fermentation were obtained after 1 h of feeding, where the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.267 d−1 and 0.14 g g−1. Unlike batch fermentation, maximal cell mass and exopolysaccharides production merely reached 7.11 and 2.08 g L−1; the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.194 d−1 and 0.093 g g−1, respectively. It is concluded that the synthesis of exopolysaccharides can be promoted effectively when feeding glucose at a late exponential phase.  相似文献   

2.
The effect of hydrostatic pressure below 1000 kg cm−2 on the rate of reactions of o-and p-nitrophenylsulfenyl chlorides with styrene and cyclohexene was studied. The activation and reaction volumes (cm3 mol−1) for the reactions of o-nitrophenylsulfenyl chloride with styrene in acetonitrile (−23.1 and −23.6), 1,2-dichloroethane (−29.2 and −24.7), chlorobenzene (no, −20.2), and anisole (−25.1 and −21.2) and for the reaction of p-nitrophenylsulfenyl chloride with styrene in carbon tetrachloride (−39.5±1.5 and −22.0) were determined. In carbon tetrachloride the activation volumes for the reactions of cyclohexene with o-and p-nitrophenylsulfenyl chlorides (−37.7±2.0 and −40.9±1.2 cm3 mol−1, respectively) are almost the same and coincide with the data for the reactions with styrene. The considerable decrease in the volume of the transition state in the nonpolar solvent is considered as a consequence of the enhanced electrostriction of carbon tetrachloride in the solvate sphere of the transition state of the reaction, which excludes the nonpolar transition state of the sulfuran type. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 477–480, March, 2007.  相似文献   

3.
This article demonstrates the potential of encapsulated, engineered Lactococcus lactis as a vehicle for the oral delivery of therapeutic proteins. Using alginate-poly-l-lysine-alginate membrane-encapsulated L. lactis engineered to secrete the reporter protein Staphylococcal aureus nuclease, we show comparable viability and protein secretion between free and immobilized cells. After 12 h, microcapsules with a cell density of 4.8 × 105 colony forming unit (CFU) ml−1 grew to 2.2 × 108 CFU ml−1 and released 0.24 arbitrary unit (AU) ml−1 of nuclease, producing similar results as free cells, which grew from 3.4 × 105 to 1.9 × 108 CFU ml−1 and secreted 0.21 AU ml−1 of nuclease. Moreover, encapsulated cells at a density of 4.4 × 107 CFU ml−1 grew to 2.2 × 1010 CFU ml−1 in 12 h and secreted 15.3 AU ml−1 of nuclease although 3.1 × 107 CFU ml−1 of free cells reached only 2.3 × 109 CFU ml−1 and released 5.6 AU ml−1 of nuclease. We also show the sustained stability of the microcapsules during storage at 4°C over 8 weeks.  相似文献   

4.
The results of kinetic and equilibrium experiments with the set of reaction of proton abstraction from 4-nitrophenyl[bis(ethylsulphonyl)]methane in acetonitrile are reported. Two strong organic bases are used: 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD). The rates of proton transfer reaction have been measured by T-jump method in the presence of perchlorate of the appropriate base as a common cation BH+ and supporting electrolyte-tetrabutylammonium perchlorate (TBAP) in the temperature range between 20–40°C are: k H =1.32×107−2.00×107 and 2.82×107−4.84×107 dm 3mol−1s−1 for MTBD and TBD respectively. The enthalpies of activation ΔH MTBD =13.5 and ΔH TBD =18.1 kJmol−1. The entropies of activation are negative: ΔS MTBD =−62.3 and ΔS TBD =−40.3 Jmol−1K−1. The change of the absorbance of the anion of 4-nitrophenyl[bis9ethylsulphonyl)]methane at the temperature 25°C in the presence of common cation BH+ gives the equilibrium constants K=705 and 906 M−1 for MTBD and TBD respectively. Kinetic and equilibrium results are discussed. The possible mechanism of proton transfer reaction between 4-nitrophenyl[bis(ethylsulphonyl)]methane and cyclic organic bases: MTBD and TBD in acetonitrile is proposed.  相似文献   

5.
N,N-dimethyl-3-oxa-glutaramic acid was purified and characterized by 1H-NMR, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. The thermal decomposition of the title compound was studied by means of thermogravimetry differential thermogravimetry (TG-DTG) and FT-IR. The kinetic parameters of its second-stage decomposition reaction were calculated and the decomposition mechanism was discussed. The kinetic model function in a differential form, apparent activation energy and pre-exponential constant of the reaction are 3/2 [(1−α)1/3−1]−1, 203.75 kJ·mol−1 and 1017.95s−1, respectively. The values of ΔS , ΔH and ΔG of the reaction are 94.28 J·mol−1·K−1, 203.75 kJ·mol−1 and 155.75 kJ·mol−1, respectively. Supported by the National Natural Science Foundation of China (Grant No. 20106009)  相似文献   

6.
Production of an extracellular lipase from Serratia marcescens ECU1010, which is an industrially important biocatalyst for the stereospecific synthesis of Diltiazem precusor, was carefully optimized in both shake flasks and a fermenter, using Tween-80 as the enzyme inducer. Dextrin and beef extract combined with ammonium sulfate were indicated to be the best carbon and nitrogen sources, respectively. With the increase of Tween-80 from 0 to 10 g l−1, the lipase production was greatly enhanced from merely 250 U l−1 to a maximum of 3,340 U l−1, giving the highest lipase yield of ca 640 U g−1 dry cell mass (DCW), although the maximum biomass (6.0 g DCW l−1) was achieved at 15 g l−1 of Tween-80. When the medium loading in shake flasks was reduced from 20 to 10% (v / v), the lipase production was significantly enhanced. The increase in shaking speed also resulted in an improvement of the lipase production, although the cell growth was slightly repressed, suggesting that the increase of dissolved oxygen (DO) concentration contributed to the enhancements of lipase yield. When the lipase fermentation was carried out in a 5-l fermenter, the lipase production reached a new maximum of 11,060 U l−1 by simply raising the aeration rate from 0.5 to 1.0 vvm, while keeping the dissolved oxygen above 20% saturation via intermittent adjustment of the agitation speed (≥400 rpm), in the presence of a relatively low concentration (2 g l−1) of Tween-80 to prevent a potential foaming problem, which is easy to occur in the intensively aerated fermenter.  相似文献   

7.
The stability of poly(N-methylaniline) (PNMA) as electrode material has been studied in aqueous solutions of sulfuric acid with the use of electrochemical and in situ Raman spectroscopic techniques. It has been shown that the electrochemical decomposition of electrodeposited PNMA films follows a first-order reaction kinetics. The decomposition rate constants vary between 1.2 × 10−5 and 2.0 × 10−3 s−1 for electrode potential varying between 0.2 and 1.0 V vs Ag/AgCl, respectively. In situ Raman spectroscopy has been applied in obtaining kinetic data at selected electrode potentials, and good correlation of these data with the corresponding data obtained by cyclic voltammetry has been found. As compared to polyaniline, the decomposition of PNMA proceeds at nearly the same rate at electrode potentials not exceeding 0.5 V. The decomposition of PNMA proceeds faster within the potential limits of 0.5 to 0.8 V and slower at electrode potentials exceeding 0.8 V as compared to polyaniline. This article is dedicated to Professor Algirdas Vaškelis (Institute of Chemistry, Vilnius, Lithuania) on the occasion of his 70th birthday and in honour of his contributions to electrochemistry and physical chemistry.  相似文献   

8.
Viable cells of Candida guilliermondii were immobilized by inclusion into polyvinyl alcohol (PVA) hydrogel using the freezing–thawing method. Entrapment experiments were planned according to a 23 full factorial design, using the PVA concentration (80, 100, and 120 g L−1), the freezing temperature (−10, −15, and −20 °C), and the number of freezing-thawing cycles (one, three, and five) as the independent variables, integrated with three additional tests to estimate the errors. The effectiveness of the immobilization procedure was checked in Erlenmeyer flasks as the pellet capability to catalyze the xylose-to-xylitol bioconversion of a medium based on sugarcane bagasse hemicellulosic hydrolysate. To this purpose, the yield of xylitol on consumed xylose, xylitol volumetric productivity, and cell retention yield were selected as the response variables. Cell pellets were then used to perform the same bioconversion in a stirred tank reactor operated at 400 rpm, 30 °C, and 1.04 vvm air flowrate. At the end of fermentation, a maximum xylitol concentration of 28.7 g L−1, a xylitol yield on consumed xylose of 0.49 g g−1 and a xylitol volumetric productivity of 0.24 g L−1 h−1 were obtained.  相似文献   

9.
Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2 , both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH can be changed into neutral radicals by deprotonation with a pK a value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol−1·s−1. NGSH also can be oxidized by SO4 −· with a rate constant of 1.76×109 dm3·mol−1·s−1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment. The same contribution to the work Supported by the National Natural Science Foundation of China (Grant Nos. 30570376 and 50673078) and Shanghai Project (Grant Nos. 06JC14068 and 08ZZ21)  相似文献   

10.
Highly ordered amino-functionalized mesoporous silica thin films have been directly synthesized by co-condensation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) in the presence of triblock copolymer Pluronic P123 surfactant species under acidic conditions by sol-gel dip-coating. The effect of the sol aging on thin films organization is systematically studied, and the optimal sol aging time is obtained. The amino-functionalized mesoporous silica thin films exhibit a long-range ordering of 2D hexagonal (p6mm) mesostructure with a large pore size of 8.3 nm, a large Brunauer–Emmett–Teller (BET) specific surface area of 680 m2 g−1 and a large pore volume of 1.06 cm3 g−1 following surfactant extraction as demonstrated by X-ray diffraction (XRD), Transmission electron microscope (TEM), and physical adsorption techniques. Based on BET surface area and weight loss, the surface coverage of amino-groups for the amino-functionalized mesoporous silica thin films is calculated to be 3.2 amino-groups per nm2. Moreover, the functionalized thin films display improved properties for immobilization of cytochrome c in comparison with pure-silica mesoporous thin films.  相似文献   

11.
Increasing awareness of the importance of fructooligosaccharides (FOS) as ingredients of functional foods has led to intensive search of new sources of fructosyltransferases (FTase), enzymes responsible for the conversion of sucrose to fructooligosaccharides. A local strain of Rhizopus stolonifer isolated from spoilt orange fruit with high fructosyltransferase activity (U t) of 12.31–45.70 U mL−1 during a fermentation period of 24–120 h is herein reported. It showed low hydrolytic activity (U h) in the range of 0.86–1.78 U mL−1 during the same period. FOS yield of 34 % (1-kestose, GF2, nystose, GF3) was produced by FTase obtained from a 72 h-old culture using 60 g of sucrose per 100 mL of the substrate. When the isolate was grown in a defined submerged medium, its pH dropped sharply from the intial value of 5.5 to 1.0 within 24 h, and this value was maintained throughout the fermentation. The biomass content ranged from 8.8 g L−1 at 24 h of fermentation to reach the maximum of 10 g L−1 at 72 h. It was reduced to 5.6 g L−1 at the end of 120 h of fermentation. This report represents the first reference to a strain of Rhizopus as a source of FTase for the production of FOS. The high U t/U h ratio shown by this isolate indicates that it may be a good strain for the industrial and commercial production of FOS. However, there is a need of further optimization of the bioprocess to increase the conversion efficiency of sucrose to FOS by the enzyme.  相似文献   

12.
With the objective of determining the kinetic behavior (growth, substrate, pH, and carotenoid production) and obtain the stoichiometric parameters of the fermentative process by Sporidiobolus salmonicolor in synthetic and agroindustrial media, fermentations were carried out in shaken flasks at 25°C, 180 rpm, and initial pH of 4.0 for 120 h in the dark, sampling every 6 h. The maximum concentrations of total carotenoids in synthetic (913 μg/L) and agroindustrial (502 μg/L) media were attained approximately 100 h after the start of the fermentative process. Carotenoid bioproduction is associated with cell growth and the ratio between carotenoid production and cell growth (Y P/X) is 176 and 163 μg/g in the synthetic and agroindustrial media, respectively. The pH of the agroindustrial fermentation medium varied from 4.2 to 8.5 during the fermentation. The specific growth rate (μ X) for S. salmonicolor in synthetic and agroindustrial media was 0.07 and 0.04 h−1, respectively. The synthetic medium allowed for greater productivity, obtaining maximum cell productivity (P x) of 0.08 g L−1 h−1 and maximum total carotenoid productivity (P car) of 14.2 μg L−1 h−1. Knowledge of the kinetics of a fermentative process is of extreme importance when transposing a laboratory experiment to an industrial scale, as well as making a quantitative comparison between different culture conditions.  相似文献   

13.
The transfer of the α-hydroxy-carboxylates of glycolic, lactic, mandelic and gluconic acid from the aqueous electrolyte phase into an organic 4-(3-phenylpropyl)-pyridine (PPP) phase is studied at a triple-phase boundary electrode system. The tetraphenylporphyrinato complex MnTPP dissolved in PPP is employed to drive the anion transfer reaction and naphthalene-2-boronic acid (NBA) is employed as a facilitator. In the absence of a facilitator, the ability of α-hydroxy-carboxylates to transfer into the organic phase improves, consistent with hydrophobicity considerations giving relative transfer potentials (for aqueous 0.1 M solution) of gluconate>glycolate>lactate>mandelate. In the presence of NBA, a shift of the reversible transfer potential to more negative values is indicating fast reversible binding (the mechanism for the electrode process is EICrev) and the binding constants are determined as K glycolate = 2 M−1, K mandelate = 60 M−1, K lactate = 130 M−1 and K gluconate = 2,000 M−1. The surprisingly strong interaction for gluconate is rationalised based on secondary interactions between the gluconate anion and NBA.  相似文献   

14.
pH potentiometric and spectrophotometric investigations on the complex formation equilibria of CuII with iminodiacetate (ida2−) and heterocyclic N-bases, viz. imidazole and benzimidazole (B), in aqueous solution in binary and ternary systems using different molar ratios of the reactants indicated the formation of complexes of the types, Cu(ida), Cu(ida)(OH), (ida)Cu(OH)Cu(ida), Cu(B)2+, Cu(H-1B)+, Cu(ida)(H−1B), (ida)Cu(B)Cu(ida) and (ida)Cu(H−1B)Cu(ida). Formation constants of the complexes at 25 ±1° at a fixed ionic strength,I = 0.1 mol dm−3 (NaNO3) in aqueous solution were evaluated and the complex formation equilibria were elucidated with the aid of speciation curves. Departure of the experimental values of the reproportionation constants(ΔlogK cu) of ternary Cu(ida)(H−1B) complexes from the statistically expected values, despite their formation in appreciable amounts at equilibrium, were assigned tofac(f)-mer(m) equilibria of the ida2− ligand coordinated to CuII, as the N-heterocyclic donors, (H−1B), coordinatetrans- to the N-(ida2−) atom in the binary Cu(ida) f complex to form the ternary Cu(ida) m (H−1B) complexes  相似文献   

15.
The inhibitory effect of para-nitrophenol on the catalytic reaction of catalase was investigated. Michaelis-Menten kinetic parameters were determined from Lineweaver-Burk plots obtained in the absence or in the presence of the inhibitor. The inhibitor pattern, revealed by the Lineweaver-Burk plots, suggested a fully mixed inhibition mechanism. Spectrophotometric monitoring of the indicator reaction: in conjunction with initial rate measurements was employed for the kinetic determination of the inhibitor. Calibration plots of initial rate vs. para-nitrophenol concentration were linear in the concentration range 0.9·10−5–2.5·10−5 mol/L and the detection limit was 3·10−6 mol/L (417 μg/L) para-nitrophenol. Interferences from other phenolic compounds like orto-cresole, meta-and orto-nitrophenol were observed.  相似文献   

16.
The specific ion interaction theory (SIT) was applied to the first hydrolysis constants of Eu(III) and solubility product of Eu(OH)3 in aqueous 2, 3 and 4 mol⋅dm−3 NaClO4 at 303.0 K, under CO2-free conditions. Diagrams of pEuaq versus pCH were constructed from solubilities obtained by a radiometric method, the solubility product log10 Ksp, Eu(OH)3I {Eu(OH)3(s) Euaq3++ 3OHaq } values were calculated from these diagrams and the results obtained are log10 Ksp,Eu(OH)3I = − 22.65 ± 0.29, −23.32 ± 0.33 and −23.70 ± 0.35 for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. First hydrolysis constants {Euaq3++H2O Eu(OH)(aq)2++H+ } were also determined in these media by pH titration and the values found are log10βEu,HI = − 8.19 ± 0.15, −7.90 ± 0.7 and −7.61 ± 0.01 for ionic strengths of 2, 3, and 4 mol⋅dm−3 NaClO4, respectively. Total solubilities were estimated taking into account the formation of both Eu3+ and Eu(OH)2+ (7.7 < pCH < 9) and the values found are: 1.4 × 10−6 mol⋅dm−3, 1.2 × 10−6 mol⋅dm−3 and 1.3 × 10−6 mol⋅dm−3, for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. The limiting values at zero ionic strength were extrapolated by means of the SIT from the experimental results of the present research together with some other published values. The results obtained are log10 Ksp, Eu(OH)3o = − 23.94 ± 0.51 (1.96 SD) and log10βEu,H0 = − 7.49 ± 0.15 (1.96 SD).  相似文献   

17.
We report ab initio UMP2 calculations of the reaction of CN with HNCO using 6-311G(d,p) basis sets. The obtained results show that the reaction has two product channels: HNCO+CN→HCN+NCO (1) and HNCO+CN→HNCN+CO (2). Channel (1) is a hydrogen abstraction reaction, which is a concerted process. The calculated potential energy barrier is 20.80 kJ/mol at UMP2(full)/6-311G(d,p) level. In the range of reaction temperature (1000-2100 K), the conventional transition theory rate constant for channel (1) ranges from 0.32×10−11 to 6.9×10−11cm3· mol−1· s−1, which is close to the experimental value. Channel (2) is a stepwise reaction involving an intermediate during the process of reaction. The UMP2(full)/6-311G(d,p) potential energy barrier is 83.42 kJ/mol for the rate-controlling step, which is much higher than that of channel (1).  相似文献   

18.
Monomeric extracellular endoglucanase (25 kDa) of transgenic koji (Aspergillus oryzae cmc-1) produced under submerged growth condition (7.5 U mg−1 protein) was purified to homogeneity level by ammonium sulfate precipitation and various column chromatography on fast protein liquid chromatography system. Activation energy for carboxymethylcellulose (CMC) hydrolysis was 3.32 kJ mol−1 at optimum temperature (55 °C), and its temperature quotient (Q 10) was 1.0. The enzyme was stable over a pH range of 4.1–5.3 and gave maximum activity at pH 4.4. V max for CMC hydrolysis was 854 U mg−1 protein and K m was 20 mg CMC ml−1. The turnover (k cat) was 356 s−1. The pK a1 and pK a2 of ionisable groups of active site controlling V max were 3.9 and 6.25, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 0.59 kJ mol−1, ΔG* = 64.57 kJ mol−1 and ΔS* = −195.05 J mol−1 K−1, respectively. Activation energy for irreversible inactivation ‘E a(d)’ of the endoglucanase was 378 kJ mol−1, whereas enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) of activation at 44 °C were 375.36 kJ mol−1, 111.36 kJ mol−1 and 833.06 J mol−1 K−1, respectively.  相似文献   

19.
The polymerization of o-phenylenediamine (OPD) on l-tyrosine (Tyr) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation towards ascorbic acid (AA) had been studied in this report. l-Tyrosine was first covalently grafted on GCE surface via electrochemical oxidation, which was followed by the electrochemical polymerization of OPD on the l-tyrosine functionalized GCE. Then, the poly(o-phenylenediamine)/l-tyrosine composite film modified GCE (POPD-Tyr/GCE) was obtained. X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscope (SEM), and electrochemical techniques have been used to characterize the grafting of l-tyrosine and the polymerization and morphology of OPD film on GCE surface. Due to the doping of the carboxylic functionalities in l-tyrosine molecules, the POPD film showed good redox activity in neutral medium, and thus, the POPD-Tyr/GCE exhibited excellent electrocatalytic response to AA in 0.1 mol l−1 phosphate buffer solution (PBS, pH 6.8). The anode peak potential of AA shifted from 0.58 V at GCE to 0.35 V at POPD-Tyr/GCE with a greatly enhanced current response. A linear calibration graph was obtained over the AA concentration range of 2.5 × 10−4–1.5 × 10–3 mol l−1 with a correlation coefficient of 0.9998. The detection limit (3δ) for AA was 9.2 × 10−5 mol l−1. The modified electrode showed good stability and reproducibility and had been used for the determination of AA content in vitamin C tablet with satisfactory results.  相似文献   

20.
S,S,S-Tris(2-ethylhexyl) phosphorotrithioate proved to be an effective solvent mediator for constructing a mexiletine-sensitive membrane electrode in combination with an ion-exchanger, sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate. Among a series of phosphorus compounds containing phosphoryl (P=O) groups, this solvent mediator showed the highest sensitivity to mexiletine in phosphate-buffered physiological saline containing 0.15 mol L−1 NaCl and 0.01 mol L−1 NaH2PO4/Na2HPO4 (pH 7.4), giving a detection limit of 2 × 10−6 mol L−1 with a slope of 58.8 mV decade−1. This is the best reported detection limit of any mexiletine-sensitive electrode developed to date. Owing to its high selectivity toward inorganic cations, the electrode was used to determine the level of mexiletine in saliva, the monitoring of which is quite effective for controlling the dose of this drug noninvasively. The mexiletine concentrations determined with the mexiletine-sensitive electrode compared favorably with those determined by high-performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号