首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Method for improving the brightness of photo- and electroluminescence from ZnS:Cu and ZnS:Cu, Al phosphors by their treatment in a low-temperature gas-discharge plasma was developed. The relationship between the luminescence brightness and spectra and surface properties of the phosphors was studied. The mechanism of processes that occur on the surface and in the bulk of phosphor particles during their bombardment with plasma ions was determined.  相似文献   

2.
Methacrylic acid (MAA) was used as a manganese carrier to prepare ZnS/MAA-Mn particles, and ZnS/ZnS:Mn phosphors were formed from ZnS/MAA-Mn by ion substitution through heat treatment. After silica coating on surface by chemical precipitation method with tetraethyl orthosilicate (TEOS), ZnS/ZnS:Mn/SiO2 phosphors were prepared successfully as a new core/shell structure compound. The thickness of layers was controlled by adjusting concentrations of manganese (II) acetate (Mn(CH3COO)2) and TEOS. Structure, morphology, and composition of prepared phosphors were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS), respectively. Photoluminescence (PL) properties of ZnS with different Mn2+ content were analyzed by PL spectrometer. PL emission intensity and PL stability were analyzed for evaluating effects of silica coating and Mn2+ activator doping. As a result, the structure of two layers could be observed, and optimum composition of ZnS/ZnS:Mn/SiO2 structure was also obtained.  相似文献   

3.
Chemical and physical aspects of the adhesion of colloidal ZnO particles (d(50)=81 nm) on the surface of ZnS-type phosphors have been studied. Here, the green-emitting phosphor ZnS:Cu,Al,Cu (d(50)=5.0 μm) applied in TV screens was chosen as model compound. The ZnS material was pretreated in various ways (H(2)O, HCl, H(2)O(2)) and reacted thereafter with a suspension containing colloidal ZnO particles. Analytical investigations (SEM, ESCA) have shown that the adhesion of colloidal ZnO particles is strongly affected by the degree of hydrolysis of the ZnS surface. Electroacoustic investigations (ESA) prove that both types of surfaces, hydrolyzed ZnS as well as colloidal ZnO, are positively charged. Even so, adhesion of ZnO particles is encouraged very much under these conditions, indicating that secondary attractive forces (electrostatic interaction, chemical bonding) determine the amount of colloidal ZnO adhered on a ZnS-type phosphor. Copyright 2000 Academic Press.  相似文献   

4.
The luminescence properties of SnO2-coated ZnS:Mn phosphors are investigated. In the case of photoluminescence, emission intensities show little change when SnO2 is coated on the surface of ZnS:Mn, while in the case of cathodoluminescence (CL), emission intensities vary depending on excitation energies. In order to determine the luminescence behaviors, surface analyses of the phosphors were performed. Auger electron spectroscopy showed that the width of the SnO2 layer on the ZnS:Mn phosphor was saturated at approximately 120 nm. Also, X-ray photoelectron spectroscopy indicated that the SnO2 layers are well formed and saturated when the molar ratios of Sn/Zn are larger than 0.005. These results suggest that the changes in the CL emissions can be attributed to a lowering of the junction barrier.  相似文献   

5.
以SnCl2•2H2O、SbCl3为原料, 通过溶胶-凝胶法制备SnO2:Sb干凝胶. 利用干凝胶氧化过程中的部分升华产物对新制的ZnS:Mn荧光粉进行了表面处理. 在固定氧气流量和氧化时间的条件下, 考察了SnO2:Sb干凝胶与ZnS:Mn荧光粉的质量比和氧化温度对处理后荧光粉电阻率的影响. 当干凝胶粉与荧光粉的质量比为3.0, 氧化温度为500 ℃处理后荧光粉的电阻率明显下降. 对处理后的荧光粉进行了室温光致荧光(PL)光谱、X射线衍射(XRD)以及透射电镜(TEM)分析. 结果表明对荧光粉进行表面处理没有改变荧光粉的光致发光性质和晶体结构.  相似文献   

6.
Copper doped Zinc Sulfide (Cu:ZnS) nanoparticles were synthesized as potential antibacterial agents, through a solvothermal approach using Mercaptosuccinic acid (MSA) and Sodium citrate (SC) as differential capping agents. Multiple variants of the Cu:ZnS nanoparticles were generated based on the refluxing intervals of the reactions and a choice of the capping agents. The microstructural properties and the elemental composition of the synthesized nanosystems were examined using Scanning Electron Microscopy (SEM) and powder X-ray Diffraction (XRD), along with Energy-Dispersive X-ray spectroscopy (EDX) and Microwave Plasma-Atomic Emission Spectroscopy (MP-AES). The as-synthesized nanosystems were also characterized for their surface attributes using Fourier Transform Infrared spectroscopy (FT-IR), while the optical properties were studied using UV–Vis spectroscopy. The electrostatic stability of the aqueous dispersions of Cu:ZnS was studied as a function of their solvent pH, using Photon Correlation Spectroscopy. For the assessment of the antibacterial properties of the different variants of Cu:ZnS nanosystems, the disk diffusion assay was performed against both Gram-positive and Gram-negative bacteria. The results show a promising antibacterial activity for the Cu:ZnS variants synthesized, with a prominent activity in the [email protected]:ZnS nanoparticle making them a novel class of potential antibacterial agents.  相似文献   

7.
The interaction between colloidal SiO(2) particles and the surface of ZnS-type phosphors has been studied. The green emitting phosphor ZnS:Cu,Al,Au applied in color television tubes was chosen as a model compound. After the surface of the phosphor particles (d(50)=5.0 μm) was treated in different manners like washing with H(2)O, HCl, or H(2)O(2) as well as precoating with colloidal ZnO particles (d(50)=81 nm), colloidal SiO(2) particles (d(50)=207 nm) were added. Thereafter, the amount of adhered SiO(2) was investigated based on SEM and ESCA analysis. By ESA measurements the surface charge of the colloids and the differently treated ZnS materials was investigated. Based on the experimental results it can be concluded that colloidal SiO(2) particles adhere sufficiently only if ZnO is present on the ZnS surface. The SiO(2) particles are located on top of the ZnO. Finally, the attractive interactions in the system ZnS-ZnO-SiO(2) are discussed in more detail. Copyright 2000 Academic Press.  相似文献   

8.
以3-巯基丙酸为稳定剂在水相中合成了Cu掺杂的ZnSe量子点(QDs), 并利用硫脲(CH4N2S)对其进行表面修饰, 制备出核壳结构的ZnSe:Cu/ZnS 量子点. 制得的量子点呈闪锌矿结构, 尺寸约为5 nm, 有较好的分散性, 其荧光发射峰在460 nm左右. 经CH4N2S修饰后, 量子点表面形成了宽禁带的ZnS包覆层, 将电子和空穴限域在了ZnSe:Cu 核内, 减少了表面发生非辐射复合的载流子, 显著提高了量子点的荧光强度. 与Na2S、硫代乙酰胺(TAA)等常用硫源相比, 以CH4N2S为硫源制得的ZnSe:Cu/ZnS 量子点壳层厚度可控, 表面钝化效果更好, 显示出更佳的荧光效率和稳定性. ZnSe:Cu/ZnS 量子点经过紫外线照射后消除了表面的悬空键, 进一步提高了其量子产率, 最终获到了具有较好荧光性质的ZnSe:Cu/ZnS量子点.  相似文献   

9.
A novel organometallic synthesis method for the preparation of colloidal ZnS nanoparticles is presented. This method enables the synthesis of undoped ZnS nanocrystals as well as doping with Cu, Pb, or both. The particles can be covered with an undoped layer of ZnS, forming core/shell-type particles with the ZnS:Pb, ZnS:Cu, or ZnS:Cu,Pb cores. The particles were characterized via TEM, XRD, dynamic light scattering, and optical spectroscopy. We investigated the extrinsic surface defects and their coverage with an additional ZnS layer in detail by temperature-dependent luminescence and luminescence lifetime spectroscopy.  相似文献   

10.
《Solid State Sciences》2007,9(11):1074-1078
Cu-activated BaZnOS was studied for the first time as a novel and efficient blue-emitting phosphor. Under the excitation of UV radiation, the phosphor can efficiently give a blue emission centered at 430 nm, corresponding to the transition from conduction band edge to the excited state of Cu2+ in the BaZnOS host. The maximum emission intensity occurs at 0.08 mol% of the Cu doping content for both photoluminescence (PL) and X-ray excited luminescence. The optimized blue-emitting BaZnOS:Cu phosphor has a larger PL intensity than the well-known green-emitting ZnO:Cu and blue-emitting ZnS:Cu phosphors. The excellent luminescence properties are tightly related to the appropriate direct band gap and the unique crystal structure of BaZnOS host. These results strongly indicate that the Cu-activated BaZnOS is a potential material used as a new high-brightness blue phosphor for UV light-emitting diode and display devices.  相似文献   

11.
以巯基丙酸(MPA)为稳定剂, 利用微波辐射加热方法制备了水溶性的Cu掺杂的ZnS纳米晶. 通过改变微波条件, 可以在460~572 nm之间实现对ZnS∶Cu纳米晶发射峰位的连续调控. 通过XRD、 UV-Vis、荧光及荧光衰减对ZnS∶Cu纳米晶的结构和发光性质进行了详细探索, 并利用时间分辨荧光光谱对其发光机理进行了初步研究.  相似文献   

12.
In the work the results of structural studies of nanocomposite systems based on ZnS:Cu (5 at.% and 10 at.%) deposited by explosive evaporation on porous anodic aluminum oxide matrices fulfilled by EXAFS and X-ray phase analysis techniques have been presented. The composites under study are promising for applications in electroluminescent light sources. The results of the studies of emission intensity of light sources depending on frequency and amplitude of exciting field have also been presented.  相似文献   

13.
The titania nanocoatings on ZnS: Ag, Cl phosphors were successfully obtained by the sol–gel process in an aqueous solution using the titanium diethanolamine complex as the precursor. The titanium diethanolamine complex was prepared with diethanolamine (DEA) and titanium butoxide at the temperature of 120 °C. The nanocoatings synthesized by this technique were uniform and continuous with a thickness of about 10–15 nm, and the photoluminescent (PL) spectra showed that no other luminescent center was introduced. The titania coatings with an appropriate thickness were expected to prevent the degradation of ZnS phosphors in field emission displays (FEDs).  相似文献   

14.
Non-toxic, environment-benign colloidal CuInS(2) (CIS) quantum dots (QDs) were synthesized through a facile noninjection, one-pot approach by reacting Cu and In precursors with dodecanethiol dissolved in 1-octadecence at 220 °C. The Cu:In precursor molar ratio was varied from 1:1 to 1:4 to intentionally generate Cu-deficient CIS QDs. Depending on the stoichiometry of the QDs, their emission peak wavelengths were tuned in red-deep red region. More Cu-deficient CIS QDs (Cu:In=1:4) were found to be more efficient than ones with Cu:In=1:1. After successive ZnS shell was overgrown on the surface of core QDs with Cu:In=1:4, the resulting core/shell QDs exhibited a highly efficient yellow emission with a quantum yield of ~50%. A substantially blue-shifted emission from the core/shell QDs versus core ones was described by suggesting an alternative recombination pathway that may be induced by the ZnS shell coating.  相似文献   

15.
The facile, efficient, and straightforward preparation of electrode material for energy storage devices has drawn considerable interest for practical applications. In this study, we have synthesized the polyhedron Cu-doped ZnS (ZnS:Cu) structure on carbon cloth (CC) using a single-step glycol-assisted process. The highly interconnected polyhedron shaped ZnS:Cu functions as positive electrode material in an aqueous electrolyte for supercapacitor application. The ZnS:Cu polyhedron-like structures with higher electroactive sites and synergistic effect exhibited higher specific capacitance of 468 F g?1 at 1 Ag?1 and cycling stability of 890.5% after 5,000 cycles. The better electrochemical performance and higher cycling stability of ZnS:Cu can be dedicated to interconnected polyhedron-like structures, doping of Cu in ZnS, and binder-free electrode design. This underlines the potential of the Cu-doped ZnS-based supercapacitor for next-generation energy storage devices.  相似文献   

16.
An evolutionary optimization process involving a genetic algorithm and combinatorial chemistry was employed for the development of green phosphors which are suitable for tricolor white-light-emitting diodes. To accomplish a high luminescent efficiency at 400 nm excitation, we screened a seven-cation oxide system including Tb, Gd, Ce, Mg, Si, Al, and B. The combination of a genetic algorithm and combinatorial chemistry enhanced the searching efficiency when applied for phosphor screening. As a result, the optimized composition was Tb(0.01)Gd(0.02)Ce(0.04)B(0.1)Si(0.83)O(delta), The luminance of this borosilicate glass was 67% that of ZnS:Cu,Al at 400-nm excitation.  相似文献   

17.
Nanoparticles of Zn1-xCuxS with Cu concentrations of x=0.0, 0.1, 0.2, 0.3 and 0.4 were prepared by a co-precipitation reaction method from homogeneous solutions of zinc and copper salts. Both the ZnS and ZnS:Cu nanoparticles excited at about 370 nm exhibits a broad green emission band peaking around 491 nm, which confirms the characteristic feature of Zn2+ as well as Cu2+ ions as luminescent centers in the lattice. The TEM micrographs showed spherical morphology for ZnS nanocrystals and the average size of the particles was estimated to be around 8.5 nm. At liquid nitrogen temperature, ESR signal characteristic of Cu2+ ions was observed in samples of all concentrations. ESR spectra analysis also indicated that Cu2+ ions enter the host lattice by replacing Zn2+ ions with distorted tetrahedral site symmetry.  相似文献   

18.
具有高活性和稳定性的半导体光催化材料是太阳能光催化制氢领域的研究热点,其中CdS胶体颗粒催化剂因其合适的禁带宽度和带边位置以及较低的原料价格而广受关注.但它在水溶液中不稳定,易受光腐蚀,因而限制了其应用.目前人们致力于用各种方法提高其稳定性,包括各种纳米结构的应用、复合其他催化剂材料以及不同晶相结构复合.ZnS是一种宽禁宽半导体,禁带宽度为3.6 eV,常被用来与CdS形成固溶体调控其能带结构,从而提高其性能和稳定性.其中核壳结构CdS/ZnS异质结具有骑跨型(I型)能带结构,具有特殊的光学和电学性质,在量子点LED和量子点生物荧光显示剂方面获得关注和应用,同时也显示了良好的光催化性能.研究人员对核壳结构CdS/ZnS异质结材料中ZnS壳层厚度对其光学性能包括荧光效率等的影响进行了研究,然而ZnS壳层厚度、颗粒尺寸及其表面处理对光催化性能影响方面的报道很少.本文发展了一种简易的两步法,制备了核壳结构CdS/ZnS微米球光催化剂.首先采用超声喷雾热分解法制备CdS微米球,然后以水浴法在CdS微米球上生长ZnS壳层.采用扫描电镜(SEM)、X射线衍射(XRD)、紫外-可见吸收光谱(UV-vis)和透射电镜(TEM)对所得样品进行了表征.SEM和TEM结果显示,所得微米球为完整包裹的球形核壳结构;XRD表征证实CdS核与ZnS壳层皆为六角相晶型;光催化性能表征结果显示,该样品的光催化制氢性能远高于单独的CdS微米球以及同法所制的ZnS微米球.通过改变前驱液浓度(Zn源浓度分别为0.2,0.3和0.5 mol/L)获得了三种不同厚度的核壳结构CdS/ZnS微米球,X射线荧光光谱结果证实了其壳层厚度成功调控.UV-vis结果发现,其吸收边由内核CdS决定,受壳层厚度的影响不大.光致荧光发射光谱分析发现,随着壳层厚度的增加,其540 nm处的CdS带边发射峰强度逐渐增大.这可能是由于ZnS壳层对CdS表面缺陷的钝化作用降低了其非辐射复合过程,从而提高了荧光发光效率.光催化制氢性能结果表明,前驱液浓度为0.3 mol/L时合成的核壳结构CdS/ZnS微米球的产氢效率最高.为了进一步提高其光催化效率,采用氮气中高温热处理、水热二次硫化法以及两者共用三种方式对性能最优的微米球进行改性,获得了三种核壳结构CdS/ZnS样品.结果发现,这些改性方法未影响其吸收边,但水热二次硫化法处理以及两者共用处理的样品在540 nm处的光致荧光发射峰强度明显高于未处理的和高温热处理的样品,证实水热二次硫化法处理可以有效地消除其表面缺陷,减少非辐射复合.XRD结果表明其晶型没有发生变化.TEM表征发现,经高温热处理后其壳层发生重结晶,形成颗粒包裹形貌,而经水热二次硫化法处理后其壳层同样发生重结晶,但包裹颗粒的尺寸明显更小.光催化性能测试表明,处理后样品的光催化性能皆优于未处理样品,其中两者共用法处理的样品产氢性能和稳定性最高.  相似文献   

19.
Highly fluorescent water-soluble CdSe/ZnS (core/shell) quantum dots (QDs) as a fluorescent Cu2+ ion probe were synthesized using thiacalix[4]arene carboxylic acid (TCC) as a surface coating agent. Hydrophobic trioctylphosphine oxide (TOPO) capped CdSe/ZnS QDs were overcoated with TCC in tetrahydrofuran at room temperature, and deprotonation of the carboxyl groups of TCC resulted in the formation of water-soluble QDs. The surface structure of the QDs was characterized by using transmission electron microscopy (TEM) and fluorescence correlation spectroscopy (FCS). TEM images showed that TCC-coated QDs were monodispersed with the particle size (core-shell moiety) of approximately 5 nm. Hydrodynamic diameter of the TCC-coated QDs was determined to be 8.9 nm by FCS, showing that the thickness of the surface organic layer of the QDs was approximately 2 nm. These results indicate that the surface layer of TCC-coated QDs forms a bilayer structure consisting of TOPO and TCC molecules. TCC-coated CdSe/ZnS QDs were highly fluorescent (quantum yield, 0.21) compared to the QDs surface-modified with mercaptoacetic acid and mercaptoundecanoic acid. Fluorescence of the TCC-coated QDs was effectively quenched by Cu2+ ions even in the presence of other transition metal ions such as Cd2+, Zn2+, Co2+, Fe2+, and Fe3+ ions in the same solution. The Stern-Volmer plot for the fluorescence quenching by Cu2+ ions showed a linear relationship up to 30 microM of Cu2+ ions. The ion selectivity of TCC-coated QDs was determined by measurements of fluorescence responses towards biologically important transition metal ions (50 microM) including Fe2+, Fe3+, Co2+>Zn2+, Cd2+. The fluorescence of TCC-coated QDs was almost insensitive to other biologically important ions such as Na+, K+, Mg2+, and Ca2+, suggesting that TCC-coated QDs can be used as a fluorescent Cu2+ ion probe for biological samples. A possible quenching mechanism by Cu2+ ions was also discussed on the basis of a Langmuir-type adsorption isotherm.  相似文献   

20.
ZnS/CdS/ZnS quantum dot quantum well was prepared. The optical properties of ZnS/CdS/ZnS QDQW with different thickness of CdS well and ZnS shell were studied. Absorption spectra, emission spectra, and luminescence lifetimes were measured. The observed luminescence was assigned to the bulk donor-acceptor pair recombination of CdS and can be enhanced by increasing the thickness of the CdS well or coating an appropriate thickness of ZnS shell on the surface of the CdS well. The luminescence enhancement was caused by the relative reduce in the surface effect. The luminescence lifetimes were influenced strongly by the surface state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号