首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tunneling conductance experiments on cuprate superconductors exhibit a large diversity of spectra that appear in different nanosized regions of inhomogeneous samples. In this Letter, we use a mean-field approach to the tt't'J model in order to address the features in these spectra that deviate from the BCS paradigm, namely, the bias sign asymmetry at high bias, the generic lack of evidence for the van Hove singularity, and the absence of coherence peaks at low dopings. We conclude that these features can be reproduced in homogeneous layered d-wave superconductors solely due to a proximate Mott insulating transition. We also establish the connection between the above tunneling spectral features and the strong renormalization of the electron dispersion around (0, pi) and (pi, 0) and the momentum space anisotropy of electronic states observed in angle-resolved photoemission spectroscopy experiments.  相似文献   

2.
In‐situ Raman spectroscopy was performed on chemical vapor deposited graphene microbridge (3 μm × 80 μm) under electrical current density up to 2.58 × 108 A/cm2 in ambient conditions. We found that both the G and the G′ peak of the Raman spectra do not restore back to the initial values at zero current, but to slightly higher values after switching off the current through the microbridge. The up‐shift of the G peak and the G′ peak, after switching off the electrical current, is believed to be due to p‐doping by oxygen adsorption, which is confirmed by scanning photoemission microscopy. Both C–O and C=O bond components in the C1s spectra from the microbridge were found to be significantly increased after high electrical current density was flown. The C=O bond is likely the main source of the p‐doping according to our density functional theory calculation of the electronic structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The parent compounds of the high-temperature cuprate superconductors are Mott insulators.It has been generally agreed that understanding the physics of the doped Mott insulators is essential to understanding the mechanism of high temperature superconductivity.A natural starting point is to elucidate the basic electronic structure of the parent compound.Here we report comprehensive high resolution angle-resolved photoemission measurements on Ca_2CuO_2Cl_2,a Mott insulator and a prototypical parent compound of the cuprates.Multiple underl.ying Fermi surface sheets are revealed for the first time.The high energy waterfall-like band dispersions exhibit different behaviors near the nodal and antinodal regions.Two distinct energy scales are identified:a d-wave-like low energy peak dispersion and a nearly isotropic lower Hubbard band gap.These observations provide new information of the electronic structure of the cuprate parent compound,which is important for understanding the anomalous physical properties and superconductivity mechanism of the high temperature cuprate superconductors.  相似文献   

4.
Surfaces of mineral cuprite prepared by fracture under UHV have been characterised by synchrotron XPS and near-edge X-ray absorption spectroscopy before and after exposure to ambient air. Before exposure of the cuprite, the Cu 2p photoelectron and Cu L2,3-edge absorption spectra were consistent with CuI with very little d9 character. Surface-enhanced O 1s spectra from the unexposed mineral revealed a surface species, with binding energy 0.95 ± 0.05 eV below the principal cuprous oxide peak, assigned to under-coordinated oxygen. A second surface species, with binding energy about 1 eV higher than the principal peak, was assigned to either hydroxyl derived from chemisorbed water vapour or surface oxygen dimers produced by restructuring of the cuprite fracture surface. The width of the principal O 1s peak was 0.66 ± 0.02 eV. The observed Cu L3- and O K-edge absorption spectra were in good agreement with those simulated for the cuprite structure. After exposure of the fracture surface to ambient air, the low binding energy O 1s surface species was barely discernible, the original high binding energy O 1s surface species remained of comparable intensity, new intensity appeared at an even higher (∼1.9 eV) binding energy, and the Cu L2,3-edge spectrum indicated the presence of CuII, consistent with the formation of a thin surface layer of Cu(OH)2.  相似文献   

5.
We have studied the valence band photoemission spectra of Ni(100) and Ni(110) single crystals near the excitation threshold for 3p core electrons. The resonant behavior of the 6 eV satellite does not depend on both the surface orientation and the polarization of the electric vector of an incident light for excitation. These results indicate that the 6 eV satellite should be under little influence of spatial symmetry of the valence band. In the angle-resolved photoemission spectra of Ni(100), we have observed another broad feature near the 6 eV satellite. It shows the large energy dispersion and is interpreted as due to the interband transition. In Ni(110), we have observed the weak valence band satellites at binding energies of about 9.3 eV and 13.4 eV. They do not show well-defined resonance around the 3p threshold.  相似文献   

6.
We have traced the development of the Ni electronic structure with thickness variation on flat and nano-structured Cu(0 0 1) surfaces by means of photoemission spectroscopy. The binding energy of the Ni 2p3/2 main peak and satellite peak is found to have shifted monotonically in the direction opposite to each other, with the increase of Ni coverage. The reduced binding energy of the thin film’s main peak is strongly correlated to the Cu 4s/Ni 3d interfacial hybridization effect (s/d IHE) and the narrowing of the d band with the reduction of dimensions, while the increased satellite binding energy results from the combination of interface hybridization and expansion of an extended 4s-like state towards the vacuum. The center of the Ni dxy band is predicted to shift closer to the Fermi level with increasing film thickness. Enhanced satellite intensity in thin films is observed, correlating to the narrowing of the d band with decreased film thickness. Through comparison of Ni films grown on flat versus nano-structured Cu(0 0 1) surfaces, the mixing of Cu and Ni atoms is found to be enhanced at the terrace edge region and consequently a larger s/d IHE is predicted for Ni on the nano-structured surface.  相似文献   

7.
8.
We describe photoemission results from pure and Sb-doped SnO2 nanoparticles deposited on gold substrates. Photoelectron spectra with synchrotron radiation were recorded for Sn 3d, Sb 3d and O 1s core levels and valence bands in the 500-1200 eV energy range. For pure SnO2 nanoparticles the surface is terminated by an oxygen rich layer with no obvious surface environment for Sn. When doped n-type with 9.1% or 16.7% Sb, dopant atoms are concentrated near the surface of the nanoparticles. The valence state of the dopant atoms is predominantly SbV. Plasmon satellite features are also observed in core level photoemission spectra and their intensity relative to the main peak increases with increasing photon energy. Received 30 November 2000  相似文献   

9.
Summary A detailed XPS study of the lithium-intercalated NiPS3 specimens was performed at the 2p, 3p, 3s core levels of the nickel atoms and at the 2p core levels of the sulphur and phosphorous atoms for various lithium contents. Comparison of the Ni 2p, 3p and 3s XPS spectra corresponding to NiPS3 and Li x NiPS3 systems shows some evident trends. In particular, a shift of the Ni main line towards lower binding energies, a decrease in the intensity of the Ni 3p, 2p satellite structures and a change in the full width at half maximum of the Ni 3s band with lithium content are observed. All these findings suggest a change in the 3d electron configuration for high lithium concentrations. As regards the cluster (P2S6)4−, with the addition of lithium, a P 2p main line shift towards higher binding energies is noted, while the S 2p peak shifts towards lower binding energies. These results are discussed in comparison with previous physical measurements concerning the nickel reduction process and the related electronic modifications. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

10.
We explore the correlation between the Hall coefficient, penetration depth, transition temperature, gap anisotropy and hole concentration in a tight binding model for layered high-temperature superconductors. By adopting the BCS strategy, nearest neighbor intralayer singlet and extendeds-wave pairing cut off at the hole Fermi energy, remarkable agreement with generic experimental facts is obtained. Thus, a cylindrical hole Fermi surface and intralayer extendeds-wave singlet pairing appear to be generic features of the cuprate semiconductors. For high doping levels, however, intralayerd-wave singlet pairing appears to be the stable phase.  相似文献   

11.
A resonant enhancement of valence band photoemission features in Ni near the 3s threshold is presented. The emission behavior with photon energy of the Ni-3d band is characteristic of a Fano-type resonance. In addition to the main 3d-band emission and 6eV binding energy satellite, a weak satellite is observed at 7.2eV below the Fermi level with photon energies in the vicinity of the 3s threshold.  相似文献   

12.
We report on a tunneling study of underdoped submicron Bi2Sr2-xLaxCuO6+δ (La-Bi2201) intrinsic Josephson junctions (IJJs), whose self-heating is sufficiently suppressed. The tunneling spectra are measured from 4.2 K up to the pseudogap opening temperature of T* = 260 K. The gap value found from the spectral peak position is about 35 meV and has a weak temperature dependence both below and above the superconducting transition temperature of Tc = 29 K. Since the superconducting gap should have a value of 10-15 meV, our results indicate that the pseudogap (~35 meV) plays an important role in the underdoped La-Bi2201 intrinsic tunneling spectroscopy down to the lowest temperature of 4.2 K. However, the contribution of the superconducting gap can be separated by normalizing the spectra to the one near and above Tc, which shows that the IJJs can be a useful tool for the study of the electronic properties of the La-Bi2201 cuprate superconductors.  相似文献   

13.
The electronic Raman response in the electron-doped cuprate superconductors is studied based on the t-t-J model. It is shown that although the domelike shape of the doping dependent peak energy in the B2g symmetry is a common feature for both electron-doped and hole-doped cuprate superconductors, there are pronounced deviations from a cubic response in the B1g channel and a linear response in the B2g channel for the electron-doped case in the low energies. It is also shown that these pronounced deviations are mainly caused by a nonmonotonic d-wave gap in the electron-doped cuprate superconductors.  相似文献   

14.
Spectra for the filled and unfilled electronic states of the (Bi,Pb)-2223 high temperature superconductor were recorded by photoemission and fluorescence X-ray absorption in the entire doping range achieved by substitution of bivalent Ca ions with trivalent Y. In photoemission these samples show diminishing spectral intensity near E F and at 1.5 eV binding energy with increasing Y content. Parallel to the observations for the filled states the O1s X-ray absorption spectra show a decrease and a shift to higher energies of the empty states just above EF The spectral structures are identified in the framework of the Hubbard model.  相似文献   

15.
Recent angle-resolved photoemission spectroscopy (ARPES) experiments on cuprate superconductors provide important guidelines for a theory of electronic excitations in the stripe phase. Using a cluster perturbation theory, where short-distance effects are accounted for by exact cluster diagonalization and long-distance effects by perturbation (in the hopping), we calculate the single-particle Green's function for a striped t-J model. The data obtained quantitatively reproduce salient (ARPES) features and may serve to rule out "bond-centered" in favor of "site-centered" stripes.  相似文献   

16.
We have investigated the evolution of the electronic properties of the t-t'-U Hubbard model with hole doping and temperature. Due to the shape of the Fermi surface, scattering from short wavelength spin fluctuations leads to strongly anisotropic quasi-particle scattering rates at low temperatures near half-filling. As a consequence, significant variations with momenta near the Fermi surface emerge for the spectral functions and the corresponding ARPES signals. At low doping the inverse lifetime of quasiparticles on the Fermi surface is of order varying linearly in temperature from energies of order t down to a very low energy scale set by the spin fluctuation frequency while at intermediate doping a sub-linear T-dependence is observed. This behavior is possibly relevant for the interpretation of photoemission spectra in cuprate superconductors at different hole doping levels. Received 31 July 2000  相似文献   

17.
Angle resolved photoemission spectroscopy study is reported on a high quality optimally doped Bi2Sr1.6La0.4CuO6+delta high-Tc superconductor. In the antinodal region with a maximal d-wave gap, the symbolic superconducting coherence peak, which has been widely observed in multi-CuO2-layer cuprate superconductors, is unambiguously observed in a single-layer system. The associated peak-dip separation is just about 19 meV, which is much smaller than its counterparts in multilayered compounds, but correlates with the energy scales of spin excitations in single-layer cuprates.  相似文献   

18.
Andreev bound states at the surface of superconductors are expected for any pair potential showing a sign change in different k-directions with their spectral weight depending on the relative orientation of the surface and the pair potential. We report on the observation of Andreev bound states in high temperature superconductors (HTS) employing tunneling spectroscopy on bicrystal grain boundary Josephson junctions (GBJs). The tunneling spectra were studied as a function of temperature and applied magnetic field. The tunneling spectra of GBJ formed by YBa2Cu3O (YBCO), Bi2Sr2CaCu2O(BSCCO), and La1.85Sr0.15CuO4 (LSCO) show a pronounced zero bias conductance peak that can be interpreted in terms of Andreev bound states at zero energy that are expected at the surface of HTS having a d-wave symmetry of the order parameter. In contrast, for the most likely s-wave HTS Nd1.85Ce0.15CuO4-y (NCCO) no zero bias conductance peak was observed. Applying a magnetic field results in a shift of spectral weight from zero to finite energy. This shift is found to depend nonlinearly on the applied magnetic field. Further consequences of the Andreev bound states are discussed and experimental evidence for anomalous Meissner currents is presented. Received: 17 February 1998 / Revised: 27 April 1998 / Accepted: 23 June 1998  相似文献   

19.
The gas phase high energy photoelectron spectra of CH4, NH3, H2O, N2, O2, CO and CO2 have been recorded, and in all cases weak satellite peaks to high binding energy of the main ionization peak are observed. These peaks are assigned to transitions to ionic states in which valence electron excitation as well as core ionization has occurred. The intensity and position of these peaks, relative to the main ionization peak have been estimated from ab initio UHF calculations on the core hole states, which in general allow assignment of the satellite peaks in terms of orbital transitions of the core hole ion.  相似文献   

20.
As a model of the cuprate superconductors, we have studied thep hole motion in a planar antiferromagnetic (AFM) background and ac-axis boson field. The indirect coupling between thed spins through thep holes is considered. In a range of the hole concentration, the indirect Cu–Cu interaction enhances the planar AFM coupling though it destroys the weakc-axis AFM order. At higher concentrations, the compensation of thed spins by thep holes occurs. For the strongp-d exchange coupling, thep holes can pair to form small magnetic bipolarons in the enhanced planar AFM background. The in-plane motion of the bipolarons is independent of thec-axis motion assisted by bosons. The superconducting properties of the cuprate superconductors are determined by a 2+1 dimensional bipolaron Hamiltonian. The results obtained from our model are consistent with the observations on the cuprate superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号