首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The EPR of Mn ions in the (La1?yPry)0.7Ca0.3MnO3 system has been studied within a broad range of temperatures (4<T<600 K) and Pr concentrations (0≤y≤1), as well as under isotope substitution of 18O for 16O. All compositions were shown to undergo transitions to a magnetically ordered state with decreasing temperature. Magnetic phase diagrams were constructed for systems with different oxygen isotopes. The diagrams include paramagnetic, ferromagnetic, and antiferromagnetic regions. In the paramagnetic region, at temperatures not too close to the phase transition points, the Mn ion linewidth ΔH pp (T) is related to the magnetic susceptibility χ(T) through the relation ΔH pp (T) = [χ0/χ(T)]ΔH pp (∞) + ΔH0, where ΔH pp (∞) is the width of the exchange-narrowed line in the high-temperature approximation, χ0 ∝ 1/T is the susceptibility of noninteracting ions, and ΔH0 is the residual width originating from the sample porosity and resonance-field scatter in unoriented grains of a powder sample. An analysis of the data on ΔH pp (∞), ΔH0, and χ(T) made it possible to estimate the symmetric and antisymmetric exchange interaction of Mn ions and of the noncubic crystal-field component of the oxygen ions. These parameters were found to be independent of the oxygen isotope species to within experimental error.  相似文献   

2.
The properties of the diagonal stripe structures of the Hubbard model are theoretically studied in relation to the incommensurate spin order and the magnetic effects detected in the dielectric phase of low-doped La2?y SryCuO4 (y ≤ 0.05). The mean-field approximation is used to investigate the properties of the solutions with domain walls between antiphase antiferromagnetic domains that are centered on bonds. Such periodic structures with 2l sites in a unit cell are shown to have 2(l ? 1) levels in the lower and upper Hubbard subbands and two levels that are separated into the Hubbard gap and correspond to quasi-one-dimensional states localized on domain walls. The calculation results are employed to check the assumption that the low conduction of the dielectric LSCO phase occurs via the network of domain walls. The maximum relative change in the magnetoresistance during a spin-flop transition in a critical magnetic field is estimated, and the giant magnetoresistance is qualitatively explained.  相似文献   

3.
The atomic and magnetic structures of the iron-doped Pr0.7Ca0.3Mn1?yFeyO3 manganites (y=0, 0.1) have been studied at high pressures of up to 4 GPa in the temperature range 16–300 K. At normal pressure, Pr0.7Ca0.3MnO3 undergoes a phase transition from the paramagnetic to an antiferromagnetic (AFM) state of the pseudo-CE type and Pr0.7Ca0.3Mn0.9Fe0.1O3 undergoes a phase transition from the paramagnetic to the ferromagnetic state at low temperatures. Partial substitution of Mn atoms by Fe brings about a noticeable decrease in the average magnetic moment per atom. A new A-type AFM state was observed to form in Pr0.7Ca0.3MnO3 at a pressure P≈2.2 GPa and in Pr0.7Ca0.3Mn0.9Fe0.1O3 at 2.7 GPa. This phenomenon may originate from the anisotropy in the compressibility, which causes uniaxial contraction of the oxygen octahedra MnO6 in the structure and provides favorable conditions for the formation of an A-type AFM state. The structural parameters obtained were used to calculate the pressure dependence of bandwidth in the compounds under study.  相似文献   

4.
Hyperfine interactions on 57Fe nuclei in cubic perovskite Bi0.75Sr0.25FeO3 ? y in the temperature range 87–700 K are studied using Mössbauer spectroscopy. The temperature of the magnetic phase transition (the Neel point T N ) of bismuth ferrite is T N = 670(3) K. Below T N , the experimental spectra demonstrate a partially resolved magnetic hyperfine structure with broadened lines, which is well described by superposition of four sextets. The values of the hyperfine magnetic field B and the isomer shift δ at room temperature initiated that all iron ions are in the trivalent state. Here, three sextets with the equal isomer shifts (δ1 ≈ δ2 ≈ δ3 = 0.38 mm/s correspond to the iron ions in the octahedral oxygen environment; in the fourth sextet, the iron ions are in the square-pyramidal environment (δ3 = 0.25 mm/s).  相似文献   

5.
A comparative μSR study of ceramic samples of the EuMn2O5 and Eu0.8Ce0.2Mn2O5 multiferroics is performed in the temperature range from 15 to 300 K. It is found that the Ce doping of the EuMn2O5 sample slightly reduces the temperature of the magnetic phase transition from T N = 45 K for the EuMn2O5 sample to T N = 42.5 K for the Eu0.8Ce0.2Mn2O5 sample. Below the temperature T N for both samples, there are two types of localization of a thermalized muon with different temperature dependences of the precession frequency of the magnetic moment of the muon in an internal magnetic field. The higher frequency in both samples refers to the initial antiferromagnetic matrix. The behavior of this frequency in Eu0.8Ce0.2Mn2O5 follows the Curie–Weiss law with the exponent β = 0.29 ± 0.02, which differs from the value β = 0.39 standard for 3D Heisenberg magnetics and is observed in EuMn2O5, because of the strong frustration of the doped sample. The temperature-independent low frequency is due to the presence of Mn3+–Mn4+ ferromagnetic pairs located along the b axis of the antiferromagnetic matrix and in the regions of phase separation, which contain such ion pairs and e g electrons recharging them. In both samples, polarization losses are the same (about 20%) and are associated with the formation of Mn4+–Mn4+ + Mu complexes near Mn3+–Mn4+ ferromagnetic pairs. In the temperature interval from 25 to 45 K, the separation of the Eu0.8Ce0.2Mn2O5 structure into two fractions where the relaxation rates of polarization of muons differ by an order of magnitude is revealed. This effect is due to a change in the state of regions of phase separation (1D superlattices) at the indicated temperatures. Such effect in EuMn2O5 is significantly weaker.  相似文献   

6.
Differential scanning calorimetry has been used to study the influence of temperature on the heat capacity of synthesized vanadates Zn2V2O7, (Cu0.56Zn1.44)V2O7, and (Cu1.0Zn1.0)V2O7. It is found that dependences Cp = f(T) have extremes. The thermodynamic properties of Zn2V2O7 have been determined.  相似文献   

7.
The formation of an intermediate phase in SrFe12O19/La0.9Ca0.1MnO3 composites was demonstrated for the first time using only Mössbauer spectroscopy. The SrFe12O19/La0.9Ca0.1MnO3 composite was prepared by the two-stage (sol–gel and hydrothermal) synthesis with varying initial conditions. The X-ray diffraction studies showed that the composite consisted of two phases: well-formed structures of manganite La0.9Ca0.1MnO3 and hexagonal ferrite SrFe12O19. It was found that nanocrystalline La0.9Ca0.1MnO3 particles with size d ? 150 nm formed in the composites at the surface of plate-like SrFe12O19 crystallites. The Mössbauer studies showed that the composite contained additional (intermediate) phase La0.9Ca0.1Mn(Fe)O3 that formed at the interface between SrFe12O19 and La0.9Ca0.1MnO3 phases. The intermediate phase concentration increased with the molar content of La0.9Ca0.1MnO3; in this case, the fraction of the surface of SrFe12O19 crystallites coated with La0.9Ca0.1MnO3 increased, which led to the increase in the total area of the interface surface and the intermediate phase concentration.  相似文献   

8.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

9.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

10.
This paper presents step by step the procedure of determination of the quantum efficiency of luminescence of Mn2+ ions in the Zn1−x−yBexMnySe crystals. The method is based on the photoacoustic spectroscopy approach. In the paper, the experimental spectra of absorbance, transmission, absorption and photoacoustic spectra of the samples are presented and analyzed from the point of view of the possibility of determination of the quantum efficiency of Mn2+ ion luminescence at room temperature. It was determined experimentally that in the investigated crystals the quantum efficiency of luminescence in the Mn2+ ions is about 35%, 40%, 32% for the absorption peaks at 430 nm, 470 nm, and 510 nm, respectively, for Zn0.75Be0.2Mn0.05Se crystal.  相似文献   

11.
Organic–inorganic hybrid sample [N(C4H9)4]2Cu2Cl6 was prepared via the reaction between copper chloride and tetrabutylammonium chloride. The compound was characterized by X-ray powder diffraction, IR, Raman, differential scanning calorimetry (DSC), DTA-TGA analysis and electrical impedance spectroscopy. DSC studies indicate a presence of one-phase transition at 343 K. The complex impedance of compound [N(C4H9)4]2Cu2Cl6 have been investigated in temperature and frequency ranges 300–380 K and 200 Hz–5 MHz, respectively. The Z′ and Z″ versus frequency plots are well fitted to an equivalent circuit model. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The frequency dependence of the conductivity is interpreted in term of Jonscher's law: s(w) = sdc + Awn \sigma (\omega ){ } = {\sigma_{\rm{dc}}} + { }A{\omega^n} . The conductivity follows the Arrhenius relation. The variation of the value of these elements with temperatures confirmed the availability of the phase transition at 343 K detected by DSC and electrical measurements.  相似文献   

12.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

13.
Using time-resolved photoelectron spectroscopy, the decay channels of AuO2 and Au2O2 following photoexcitation with 3.1-eV photons have been studied. For AuO2, a state with a rather long lifetime of 30 ps has been identified. Its decay path could not be determined but photodesorption can be excluded. For Au2O2, the spectra indicate O2 desorption after 3.1-eV photoexcitation on a time scale of 1 ps. While comparing these results on Au n O2 with analogous data on Ag n O2 clusters, a discernible pattern emerges: for dissociatively bound O2(AuO2, Ag3O2), there are long-living excited states which do not decay by oxygen desorption, while for molecular chemisorption (Au2O2, Ag2O2, Ag4O2, Ag8O2), the 3.1-eV photoexcitation triggers fast O2 desorption with a high quantum yield.  相似文献   

14.
A series of glasses [(TeO2) x (B2O3)1−x ]1−y [Ag2O] y with x = 70 and y = 10, 15, 20, 25 and 30 mol% were synthesised by rapid quenching. Longitudinal and shear ultrasonic velocity were measured at room temperature and at 5 MHz frequency. Elastic properties, Poisson's ratio, microhardness, softening temperature and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses and the role of the Ag2O inside the glass network is discussed. Estimated parameters based on Makishima–Mackenzie theory and bond compression model were calculated in order to analyse the experimental elastic moduli. Comparison between the experimental elastic moduli data obtained in the study and the calculated theoretically by the mentioned above models has been discussed.  相似文献   

15.
In this work series of LiNiyCo1−yPO4 (y=0, 0.2, 0.4, 0.6, 0.8 and 1) phospho olivines were synthesized by solution co-precipitation technique and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and impedance spectroscopic analysis. The XRD patterns of LiNiyCo1−yPO4 (y=0.2, 0.4, 0.6 and 0.8) revealed that they are essentially single phase and have an Olivine-type XRD patterns similar to those of their parent compounds LiCoPO4 and LiNiPO4. An increase in wave number for most of the dominant infrared bands in PO4 vibrational region for the substitution of Co by Ni in LiCoPO4 indicated the strengthening of both the P-O and Li/Ni-O bonds. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

16.
This paper reports on a study of the influence of oxygen deficiency on the magnetization, paramagnetic susceptibility, electrical resistivity, magnetoresistance, and volume magnetostriction of the La0.9Sr0.1MnO3 − y manganite with y = 0.03, 0.10, and 0.15. The magnetization M(T) behaves in a complex way with temperature; for T < 80 K, it only weakly depends on T, and at 80 ≤ T ≤ 300 K, the M(T) curve shows a falloff. Within the interval 240 K ≤ T ≤ 300 K, the long-range magnetic order breaks up into superparamagnetic clusters. For T < 80 K, the magnetic moment per formula unit is about one-fourth that which should be expected for complete ferromagnetic alignment of Mn ion moments. Although the composition with y = 0.03, in which part of acceptor centers is compensated by donors (oxygen vacancies), the negative magnetoresistance Δρ/ρ and volume magnetostriction ω are observed to pass through maxima near the Curie point, their values are one to two orders of magnitude smaller than those for the y = 0 composition. In compositions with y = 0.10 and 0.15 with electronic doping, the values of Δρ/ρ and ω are smaller by one to two orders of magnitude than those observed for the y = 0.03 composition. They do not display giant magnetoresistance and volume magnetostriction effects, which evidences the absence of ferrons near unionized oxygen vacancies. This allows the conclusion that the part played by both compensated and uncompensated doubly charged donors consists in forming dangling Mn-O-Mn bonds, which lead to a decrease in the Curie temperature with increasing y and to the formation above it of superparamagnetic clusters of the nonferron type.  相似文献   

17.
The specific heat of [NH2(CH3)2]2ZnCl4 was measured calorimetrically in the temperature region 80–300 K. As the temperature T decreases, the C p (T) dependence indicates a phase transition sequence, with the phase transition at T6=151 K observed for the first time. The thermodynamic characteristics of the crystal were refined. The transformation occurring at T2=298.3 K is shown to be an incommensurate-commensurate phase transition.  相似文献   

18.
The dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials in crystalline and amorphous states on temperature was measured and analyzed. The results show that in the crystalline state, the thermal properties monotonically decrease with the temperature and present obvious crystalline semiconductor characteristics. The heat capacity, thermal diffusivity, and thermal conductivity decrease from 0.35 J/g K, 1.85 mm2/s, and 4.0 W/m K at 300 K to 0.025 J/g K, 1.475 mm2/s, and 0.25 W/m K at 600 K, respectively. In the amorphous state, while the dependence of thermal properties on temperature does not present significant changes, the materials retain the glass-like thermal characteristics. Within the temperature range from 320 K to 440 K, the heat capacity fluctuates between 0.27 J/g K and 0.075 J/g K, the thermal diffusivity basically maintains at 0.525 mm2/s, and the thermal conductivity decreases from 1.02 W/m K at 320 K to 0.2 W/m K at 440 K. Whether in the crystalline or amorphous state, Ag8In14Sb55Te23 are more thermally active than Ge2Sb2Te5, that is, the Ag8In14Sb55Te23 composites bear stronger thermal conduction and diffusion than the Ge2Sb2Te5 phase-change memory materials.  相似文献   

19.
Crystals of [Rb0.7(NH4)0.3]2SO4 solid solutions are studied using x-ray diffractometry in the temperature range 4.2–300 K. No anomalies are revealed in the temperature dependences of the lattice parameters and the volume of the host unit cell. A series of superstructure reflections observed along the basis axes corresponds to the guest lattice formed in the matrix of the host structure. From analyzing the axial ratio of these structures and their temperature dependences, it is concluded that the structure of the crystal has the form of an incommensurate composite. The guest structure of the composite at room temperature can be considered a set of chains that are not correlated along the b direction. In the plane perpendicular to the chain axes, these chains form a regular framework that is also incommensurate to the host lattice.  相似文献   

20.
We are herewith reporting the 151Eu Mössbauer spectra collected on a polycrystalline powder sample of Eu0.75Y0.25MnO3 from 15 K to room temperature. All the spectra consist of a single line, whose shape and related sample thickness are dependent on the temperature T. The thermal trend of the mean square displacement of Eu ion, obtained from the spectra analysis, clearly reveals a large low-temperature anharmonicity and in concomitance with the onset of the magnetic ordering consists in a linear strong decrease interrupted by two narrow wells at 29.5 K and 40 K. This behavior is interpreted in connection with the transfer of spectral weight from the 120 cm-1 optical phonon to the electromagnonic modes. The T-trend of the central shift shows that Eu3+ electronic ground state in the magnetically ordered phase differs from the one in the paramagnetic state. Finally, the temperature dependence of the hyperfine field under T N gives a contribution to interpret some controversial features regarding the phase-diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号