首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
We consider the order of a meridian (of the group) of a Klein bottle smoothly embedded in the -sphere . The order of a meridian of a Klein bottle in is a non-negative even integer. Conversely, we prove that, for every non-negative even integer , there exists a Klein bottle in whose meridian has order .

  相似文献   


2.
A graph is said to be k-extendable if any independent set of k edges extends to a perfect matching. In this paper, we shall characterize the forbidden structures for 5-connected graphs on the Klein bottle to be 2-extendable. This fact also gives us a sharp lower bound of representativity of 5-connected graphs embedded on the Klein bottle to have such a property, which was considered in Kawarabayashi et al. (submitted for publication) [4].  相似文献   

3.
If the face-cycles at all the vertices in a map on a surface are of same type then the map is called semi-equivelar. There are eleven types of Archimedean tilings on the plane. All the Archimedean tilings are semi-equivelar maps. If a map X on the torus is a quotient of an Archimedean tiling on the plane then the map X is semi-equivelar. We show that each semi-equivelar map on the torus or on the Klein bottle is a quotient of an Archimedean tiling on the plane.Vertex-transitive maps are semi-equivelar maps. We know that four types of semi-equivelar maps on the torus are always vertex-transitive and there are examples of other seven types of semi-equivelar maps which are not vertex-transitive. We show that the number of Aut(Y)-orbits of vertices for any semi-equivelar map Y on the torus is at most six. In fact, the number of orbits is at most three except one type of semi-equivelar maps. Our bounds on the number of orbits are sharp.  相似文献   

4.
5.
In a previous paper by the author joint with Baogang XU published in Discrete Math in 2018, we show that every non-planar toroidal graph can be edge partitioned into a planar graph and an outerplanar graph. This edge partition then implies some results in thickness and outerthickness of toroidal graphs. In particular, if each planar graph has outerthickness at most $2$ (conjectured by Chartrand, Geller and Hedetniemi in 1971 and the confirmation of the conjecture was announced by Gon\c{c}alves in 2005), then the outerthickness of toroidal graphs is at most 3 which is the best possible due to $K_7$. In this paper we continue to study the edge partition for projective planar graphs and Klein bottle embeddable graphs. We show that (1) every non-planar but projective planar graph can be edge partitioned into a planar graph and a union of caterpillar trees; and (2) every non-planar Klein bottle embeddable graph can be edge partitioned into a planar graph and a subgraph of two vertex amalgamation of a caterpillar tree with a cycle with pendant edges. As consequences, the thinkness of projective planar graphs and Klein bottle embeddabe graphs are at most $2$, which are the best possible, and the outerthickness of these graphs are at most $3$.  相似文献   

6.
Gibbs sampling also known as Glauber dynamics is a popular technique for sampling high dimensional distributions defined on graphs. Of special interest is the behavior of Gibbs sampling on the Erd?s‐Rényi random graph G(n,d/n), where each edge is chosen independently with probability d/n and d is fixed. While the average degree in G(n,d/n) is d(1 ‐ o(1)), it contains many nodes of degree of order log n/log log n. The existence of nodes of almost logarithmic degrees implies that for many natural distributions defined on G(n,p) such as uniform coloring (with a constant number of colors) or the Ising model at any fixed inverse temperature β, the mixing time of Gibbs sampling is at least n1+Ω(1/log log n). Recall that the Ising model with inverse temperature β defined on a graph G = (V,E) is the distribution over {±}Vgiven by . High degree nodes pose a technical challenge in proving polynomial time mixing of the dynamics for many models including the Ising model and coloring. Almost all known sufficient conditions in terms of β or number of colors needed for rapid mixing of Gibbs samplers are stated in terms of the maximum degree of the underlying graph. In this work, we show that for every d < ∞ and the Ising model defined on G (n, d/n), there exists a βd > 0, such that for all β < βd with probability going to 1 as n →∞, the mixing time of the dynamics on G (n, d/n) is polynomial in n. Our results are the first polynomial time mixing results proven for a natural model on G (n, d/n) for d > 1 where the parameters of the model do not depend on n. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than npolylog(n). Our proof exploits in novel ways the local tree like structure of Erd?s‐Rényi random graphs, comparison and block dynamics arguments and a recent result of Weitz. Our results extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which every vertex v of the graph has a neighborhood N(v) of radius O(log n) in which the induced sub‐graph is a tree union at most O(log n) edges and where for each simple path in N(v) the sum of the vertex degrees along the path is O(log n). Moreover, our result apply also in the case of arbitrary external fields and provide the first FPRAS for sampling the Ising distribution in this case. We finally present a non Markov Chain algorithm for sampling the distribution which is effective for a wider range of parameters. In particular, for G(n, d/n) it applies for all external fields and β < βd, where d tanh(βd) = 1 is the critical point for decay of correlation for the Ising model on G(n, d/n). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

7.
Recently, Bès, Martin, and Sanders [11] provided examples of disjoint hypercyclic operators which fail to satisfy the Disjoint Hypercyclicity Criterion. However, their operators also fail to be disjoint weakly mixing. We show that every separable, infinite dimensional Banach space admits operators T1,T2,…,TNT1,T2,,TN with N?2N?2 which are disjoint weakly mixing, and still fail to satisfy the Disjoint Hypercyclicity Criterion, answering a question posed in [11]. Moreover, we provide examples of disjoint hypercyclic operators T1T1, T2T2 whose corresponding set of disjoint hypercyclic vectors is nowhere dense, answering another question posed in [11]. In fact, we explicitly describe their set of disjoint hypercyclic vectors. Those same disjoint hypercyclic operators fail to be disjoint topologically transitive. Lastly, we create examples of two families of d-hypercyclic operators which fail to have any d-hypercyclic vectors in common.  相似文献   

8.
The concept of rigid sphericalt-designs was introduced by Bannai. He conjectured that there is a functionf(t, d) such that ifX is a sphericalt design in thed-dimensional Euclidean space so that |X|>f(t, d), theX is non-rigid. Furthermore, he asked to find examples of rigid but not tight sperical designs. In the present article we shall investigate the case whenX is an orbit of a finite reflection group and prove thatX is rigid iff tight for the groupsA n ,B n ,C n ,D n ,E 6,E 7,F 4,I 3.Research was partially supported by Hungarian National Research fund Grant No. 4267.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号