共查询到20条相似文献,搜索用时 15 毫秒
1.
Arjunan V Rani T Mythili CV Mohan S 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,79(3):486-496
A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. 相似文献
2.
Leskowitz GM Ghaderi N Olsen RA Pederson K Hatcher ME Mueller LJ 《The journal of physical chemistry. A》2005,109(6):1152-1158
We report use of dynamic nuclear magnetic resonance (NMR) to measure the amide rotational barrier in isonicotinamide. A significant challenge to obtaining good transition rates from dynamic NMR data is suppression of errors due to inherent line widths associated with transverse relaxation. We address this challenge with a fitting procedure that incorporates transverse relaxation over the temperature range of interest simply and reliably. The fitting model is nonlinear in only one of the fit parameters, namely, the activation enthalpy. This reduces parameter estimation to solution of a single transcendental equation, which avoids both a fine search over a multidimensional parameter space and extrapolation of a "limiting line width" solely from slow-exchange data. The activation enthalpy Delta H++ measured for isonicotinamide, +14.1 +/- 0.2 kcal/mol, falls between those of its regioisomers picolinamide and nicotinamide, which were reported in an earlier study. In that study, ab initio calculations of the rotational barriers helped to discern the relative importance of steric, electronic, and hydrogen-bonding effects in this biochemically significant combination of pyridine-ring and carboxamide moieties. A direct comparison between isonicotinamide and nicotinamide, where steric and hydrogen-bonding effects differ only slightly, permits a closer study of electronic considerations. 相似文献
3.
Olsen RA Liu L Ghaderi N Johns A Hatcher ME Mueller LJ 《Journal of the American Chemical Society》2003,125(33):10125-10132
Pyridine carboxamides are a class of medicinal agents with activity that includes the reduction of iron-induced renal damage, the regulation of nicotinamidase activity, and radio- and chemosensitization. Such pharmacological activities, and the prevalence of the carboxamide moiety and the importance of amide rotations in biology, motivate detailed investigation of energetics in these systems. In this study, we report the use of dynamic nuclear magnetic resonance to measure the amide rotational barriers in the pyridine carboxamides picolinamide and nicotinamide. The activation enthalpies and entropies of DeltaH++ = 12.9 +/- 0.3 kcal/mol and DeltaS++ = -7.7 +/- 0.9 cal/mol K for nicotinamide and DeltaH++ = 18.3 +/- 0.4 kcal/mol and DeltaS++ = +1.3 +/- 1.0 cal/mol K for picolinamide report a substantial energetic difference for these regioisomers. Ab initio calculations of the rotational barriers are in good agreement with the experimentally determined values and help partition the 5.4 kcal/mol enthalpy difference into its major contributions. Of principal importance are the variations in steric interactions in the ground states of picolinamide and nicotinamide, superior pi electron donation from the pyridine ring in the transition state of nicotinamide, and an intramolecular hydrogen bond in the ground state of picolinamide. 相似文献
4.
Wolfgang Knoll Michael M Bobek Gerald Giester Udo H Brinker 《Tetrahedron letters》2001,42(52):1249-9165
A new and potentially therapeutic diazirine, 4-aziadamantan-1-amine, was synthesized. Structural characterization also included single crystal X-ray diffraction analysis. Photolysis of the title compound in the solid phase afforded an azine. In contrast, pyrolysis in the gas phase gave two intramolecular carbene insertion products in a 4:1 ratio. A rationale for the observed diastereoselectivity is offered based upon ab initio calculations. Finally, inclusion compounds of the title compound with - and β-cyclodextrin were prepared. A 2:1 complex bearing two hosts was formed with -cyclodextrin and a 1:1 complex was obtained with β-cyclodextrin. The association constants were determined via induced circular dichroism (ICD) analysis. 相似文献
5.
Rotational spectra of the weakly bound Kr-methane van der Waals complex were recorded using a pulsed molecular beam Fourier transform microwave spectrometer in the range from 3.5 to 18 GHz. Spectra of 25 isotopomers of Kr-methane were assigned and analyzed. For isotopomers containing CH4, 13CH4, and CD4, two sets of transitions with K = 0 and one with K = 1 were recorded, correlating to the j = 0, 1, and 2 rotational levels of free methane, respectively (j is the rotational angular momentum quantum number of the methane monomer). For isotopomers containing CH3D and CHD3, two K = 0 components were recorded, correlating to the j(k) = 0(0) and 1(1) rotational levels of free methane (k corresponds to the projection of j onto the C3 axis of CH3D and CHD3). The obtained spectroscopic results were used to derive van der Waals bond distance R, van der Waals stretching frequency nu(s), and the corresponding stretching force constant k(s). Nuclear spin statistical weights of individual states were obtained from molecular symmetry group analyses and were compared with the observed relative transition intensities. The tentatively assigned j = 2 transitions were more intense than predicted from symmetry considerations. This is attributed to a relatively large effective dipole moment of this state, supported by ab initio dipole moment calculations. Ab initio potential energy calculations of Kr-CH4 and Ar-CH4 were done at the coupled cluster level of theory, with single and double excitations and perturbative inclusion of triple excitations, using the aug-cc-pVTZ basis set supplemented with bond functions. The theoretical results show that the angular dynamics of the dimer does not change significantly when the binding partner of methane changes from Ar to Kr. The dipole moment of Ar-CH4 was calculated at various configurations, providing a qualitative explanation for the unsuccessful spectral searches for rotational transitions of Ar-CH4. 相似文献
6.
Microwave spectra in the 7-26 MHz region have been measured for the van der Waals complexes, Ar-CH3CH2CH3, Ar-(13)CH3CH2CH3, 20Ne-CH3CH2CH3, and 22Ne-CH3CH2CH3. Both a- and c-type transitions are observed for the Ar-propane complex. The c-type transitions are much stronger indicating that the small dipole moment of the propane (0.0848 D) is aligned perpendicular to the van der Waals bond axis. While the 42 transition lines observed for the primary argon complex are well fitted to a semirigid rotor Hamiltonian, the neon complexes exhibit splittings in the rotational transitions which we attribute to an internal rotation of the propane around its a inertial axis. Only c-type transitions are observed for both neon complexes, and these are found to occur between the tunneling states, indicating that internal motion involves an inversion of the dipole moment of the propane. The difference in energy between the two tunneling states within the ground vibrational state is 48.52 MHz for 20Ne-CH3CH2CH3 and 42.09 MHz for 22Ne-CH3CH2CH3. The Kraitchman substitution coordinates of the complexes show that the rare gas is oriented above the plane of the propane carbons, but shifted away from the methylene carbon, more so in Ne propane than in Ar propane. The distance between the rare gas atom and the center of mass of the propane, Rcm, is 3.823 A for Ar-propane and 3.696 A for Ne-propane. Ab initio calculations are done to map out segments of the intermolecular potential. The global minimum has the rare gas almost directly above the center of mass of the propane, and there are three local minima with the rare gas in the plane of the carbon atoms. Barriers between the minima are also calculated and support the experimental results which suggest that the tunneling path involves a rotation of the propane subunit. The path with the lowest effective barrier is through a C2v symmetric configuration in which the methyl groups are oriented toward the rare gas. Calculating the potential curve for this one-dimensional model and then calculating the energy levels for this potential roughly reproduces the spectral splittings in Ne-propane and explains the lack of splittings in Ar-propane. 相似文献
7.
[structure: see text] (1)H NMR measurements and ab initio calculations were used to study the interactions between hindered/nonhindered phenols and carboxylic acid esters. The dihedral angle (phi) between the OH group and a plane of the aromatic ring is close to 0 degrees in the hydrogen-bonded nonhindered phenols, whereas for 2,6-di-tert-butyl-4-methylphenol the OH group is completely twisted out of the aromatic plane (phi approximately 90 degrees ). 相似文献
8.
Vimalraj V Vijayalakshmi S Umayaparvathi S Krishnan AR 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,78(2):670-675
The Fourier transform infrared spectra, 1H NMR and 13C NMR spectra of 2-furoic hydrazide have been recorded. Optimized geometry, frequency and intensity of the vibrational bands of 2-furoic hydrazide were obtained by the density functional theory (DFT) and ab initio levels of theory and also 1H NMR, 13C NMR chemical shifts were calculated using 6-31G+(d,p) basis sets. The theoretical values were compared with experimental values. 相似文献
9.
Franco Cristiani Francesco A. Devillanova Alessandra Garau Francesco Isaia Vito Lippolis Gaetano Verani 《Heteroatom Chemistry》1994,5(1):65-71
The reaction of some 5,5-dimethyl-2-thiohydantoin derivatives (X = O, S; R, R′ = H, Me) with molecular diiodine has been studied in CH2Cl2 solution by different spectroscopic techniques. The formation constants (K) of the 1 : 1 molecular adducts and their thermodynamic parameters have been measured by UV-visible spectroscopy. The results allow us to point out the different donor properties of C(2) = S thioketonic sulfur between the two series of compounds (X = O, S) and the influence of N(1) and N(3) methylation on the K's. From the analysis of the ν(NH) frequencies, it has been possible to show hydrogen bond interactions between the NH's and the S-bonded iodine; this seems to be an important factor in determining the K values. 相似文献
10.
Using ab initio GIAO calculations the experimental 1H NMR spectra of the E and Z isomers of alkyl phenyl ketone phenylhydrazones R1-C(Ph) = N-NH-Ph (R1 = Me, Et, iPr, and tBu) have been re-interpreted and deviations from Karabatsos' rule or from the assignment of Bellamy and Hunter have been discussed in the light of the optimized geometrical structures. 相似文献
11.
Ab initio MO calculations have been carried out for the ozone-water 1:1 complexes in order to elucidate the structures and electronic state of the complexes. The QCISD calculations indicated that three structures are obtained as stable forms of O(3)-H(2)O. The most stable structure of O(3)-H(2)O has C(s) symmetry where the central oxygen of O(3) and all atoms of H(2)O are located on the molecular C(s) plane. The dipole of H(2)O orients toward the central oxygen atom of O(3) (i.e., dipole orientation form). The other two forms are cis and trans forms of O(3)-H(2)O where all atoms are located on the molecular plane, and a hydrogen of H(2)O binds to one of the terminal oxygen atoms of O(3) by a hydrogen bond. The binding energies of O(3) to H(2)O for dipole, cis, and trans forms are calculated to be 2.39, 2.27, and 2.30 kcal/mol, respectively, at the QCISD(T)/6-311++G(3df,3pd)//QCISD/6-311++G((d,p) level. The dipole orientation form is more stable in energy than the cis and trans forms. Rotational constants for the dipole orientation form are calculated to be A = 11.897, B = 4.177, and C = 3.318 GHz which are in good agreement with the experimental values (A = 11.961, B = 4.174, and C = 3.265 GHz). The electronic states of O(3)-H(2)O were discussed on the basis of theoretical results. 相似文献
12.
Phenyl acetylene complexes with HF, H2O, and NH3 are investigated with ab initio molecular orbital calculations using the 6-31G Gaussian basis set. HF is found to form a π complex, whereas H2O and NH3 form σ complexes. Observations of experimental spectroscopic shifts are rationalized. 相似文献
13.
Gomila RM Quiñonero D Rotger C Garau C Frontera A Ballester P Costa A Deyà PM 《Organic letters》2002,4(3):399-401
Ab initio calculations were carried out on zinc-porphyrins complexed to several amines: N-(3,5-dimethyl-pyridin-4-yl)-formamide, 1,4-diazabiciclo[2.2.2]octane (DABCO), and 1-azabiciclo[2.2.2]octane (quinuclidine). The proton chemical shifts of these complexes were calculated ab initio at the GIAO-HF/6-311G//HF/3-21G level of theory, and the obtained values agree satisfactorily with experimental results. The complexation-induced changes in (1)H NMR chemical shifts correlate well with differences in association constants of several host-guest complexes. 相似文献
14.
Dammak T Fourati N Abid Y Boughzala H Mlayah A Minot C 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,66(4-5):1097-1101
Single crystals of L-histidine oxalate were obtained by slow evaporation of an aqueous solution at room temperature. The grown crystals have been subjected to X-ray diffraction (XRD), Infrared, and Raman spectroscopy. The title compound crystallises in the non-centrosymmetric space group P2(1)2(1)2(1,) the crystal cohesion is achieved by relatively strong hydrogen bonds, so that the NH3 groups show significant distortion with respect to the tetrahedral symmetry. Raman and infrared spectra of the title compound were recorded in the frequency range 300-3200 and 400-4000 cm-1, respectively. To obtain a reliable assignment of the observed spectral lines, we have calculated the geometry and the frequencies of the vibrational modes of histidine cation and the oxalate anion using the semi empirical PM3 method. 相似文献
15.
Szöllösi G Chatterjee A Forgó P Bartók M Mizukami F 《The journal of physical chemistry. A》2005,109(5):860-868
Two py-hexahydrocinchonidine diastereomers were selectively obtained in the heterogeneous catalytic hydrogenation of cinchonidine over supported Pt catalyst. The two isolated compounds when used as chiral base catalysts in the Michael addition of a beta-keto ester to methyl vinyl ketone gave products of opposite configuration in excess. To trace the reason of this behavior, in the present study, the structures of the two diastereomers were fully optimized by ab initio quantum chemical calculation. These results were then compared with several nuclear Overhauser enhancement spectroscopy (NOESY) signal intensities from the spectra of the two compounds. Further we performed a conformational search on all the optimized geometries independently for the two flexible torsional angles, which are linking the quinuclidine and tetrahydroquinoline moieties present in these molecules. This study allowed us to propose the configuration of the C(4)(') chiral center. Thus, the product mixture resulted in the hydrogenation of cinchonidine containing the 4'-(S)-diastereomer in excess (de = 20%). According to the computation results the 4'-(S)-diastereomer is more stable than the 4'-(R)-diastereomer. The 4'-(S)-conformer obtained by computation has lower electronic energy than the structures obtained for the 4'-(R)-diastereomer, which may explain the excess formation of the first one. The results of the Michael addition catalyzed by these diastereomers were interpreted on the basis of these conclusions. 相似文献
16.
《Journal of Inorganic and Nuclear Chemistry》1976,28(12):2189-2194
The1H NMR spectra of various monomeric, dimeric and trimeric complexes of Ni(II) with n-hydroxypropyl-salicylaldimines have been measured and assigned. They are consistent with structures previously proposed for these complexes. 相似文献
17.
H. Keypour H. Khanmohammadi K. P. Wainwright M. R. Taylor 《Journal of the Iranian Chemical Society》2004,1(1):53-64
Three new pendant arm Schiff-base macrocyclic complexes, [CdLn]2+ (n = 5, 6, 7), have been prepared via cyclocondensation of 2,6-diacetylpyridine with three different branched hexaamines in the presence of Cd(II). The ligands are 15-, 16- and 17-membered pentaaza macrocycles having two 2-aminoethyl pendant arms [L5 = 2,13-dimethyl-6,9-bis(aminoethyl)-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene, L6 = 2,14-dimethyl-6,10-bis(aminoethyl)-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),2,13,15,17-pentaene and L7 = 2,15-dimethyl-6,11-bis(aminoethyl)-3,6,11,14,20-pentaazabicyclo[14.3.1]eicosa-1(20),2,14,16,18-pentaene]. All complexes were investigated by IR, 1H and 13C NMR, COSY(H,H) and HETCOR(H,C) spectroscopy and X-ray diffraction. In the solid state structure of each complex the Cd(II) ion is situated centrally within an approximately planar pentaaza macrocyclic ring, binding to the five nitrogen atoms, and also to the two pendant amines which are located on opposite sides of the macrocyclic plane. ab initio HF-MO calculations using a standard 3-21G* basis set have been used to verify that these similar basic structures correspond to energy minima in the gas phase. 相似文献
18.
《Chemical physics》1987,111(1):87-95
The structures and energies of various LiC2H2 complexes have been investigated by means of ab initio molecular orbital calculations. Analytic SCF gradients were employed with a double-ζ basis set to locate and characterize stationary points on the energy surface. Single-point CI calculations using a double-ζ + diffuse and polarization basis set have been carried out at the DZ + P SCF stationary points. With the highest-level theory, the Li—vinylidene complex and the cis bridged adduct are found to be the most favorable arrangements, the former complex being slightly more stable by about 2 kcal mol−1. These molecules are bound respectively by about 5 and 3 kcal mole−1 relative to infinitely separated lithium plus acetylene. Harmonic vibrational frequencies are also reported and confirm the existence of the cis LiC2H2 species recently observed in a solid argon matrix. 相似文献
19.
Ab initio studies applying the 3-21G, 6-31G, and 6-31G** basis sets and also including the MP2 correction were carried out on H2NNH2, HNNH3, and the transition state of the reaction H2NNH2(DOUBLE BOND)HNNH3. First, the geometries of molecules were optimized using the theoretical methods mentioned in the restricted Hartree–Fock (RHF) scheme. The energies of the molecules corresponding to RHF/6-31G** geometries were subsequently calculated including electron-correlation effects at the level of the second-order Møller–Plesset (MP2) perturbation theory. The vibrational frequencies, net charges, and dipole moments were obtained from the theoretical calculations. The results of our calculations indicate unambiguously that H2NNH2 is thermodynamically more stable than is HNNH3. On the other hand, an isolated HNNH3 molecule once created would be stable since barriers for its unimolecular isomerization and decomposition are relatively high. But HNNH3 is unlikely to be isolated in measurable amounts because of bimolecular tautomerization. Nevertheless, HNNH3 can be considered as an intermediate in chemical processes involving N2H4. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 64 : 447–452, 1997 相似文献
20.
An ab initio potential-energy surface of the Xe-CH4 van der Waals complex was constructed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations. The recently developed small-core pseudopotential and augmented correlation-consistent polarized valence quadruple-zeta basis set was used for the xenon atom and Dunning's augmented correlation-consistent polarized valence triple-zeta basis set for the other atoms. The basis sets were supplemented with bond functions. Dipole moments were also calculated at various configurations. Rotational spectra of the Xe-CH4 van der Waals complex were recorded using a pulsed-nozzle Fourier transform microwave spectrometer. The isotopomers studied include those of CH4,13CH4,CD4,CH3D, and CHD3 with the five most abundant Xe isotopes. Transitions within three internal rotor states, namely, the j=0,K=0; j=1,K=0; and j=2,K=1 states, were observed and assigned. Nuclear quadrupole hyperfine structures due to the presence of 131Xe(I=3/2) were detected and analyzed. It was found that the j=1,K=0 state is perturbed by a Coriolis interaction with a nearby j=1,K=1 state. For isotopomers containing CH3D and CHD3, the j=2 states are no longer metastable and could not be observed. The spectroscopic results were used to derive structural and dynamical information of the Xe-CH4 complex. 相似文献