首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron–Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength \(0 \le p \le 1\). We obtain a quantum ergodic theorem for partially decoherent processes. We show that for \(0 < p \le 1\), the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.  相似文献   

2.
3.
We construct quantum stochastic processes whose multi-time correlation functions, with suitable time ordering, can be obtained from a quantum dynamical semigroup. We prove that such a process defines a stationary Markov dilation of the associated semigroup if and only if (up to technicalities) the semigroup satisfies the quantum detailed balance condition with respect to its stationary state.  相似文献   

4.
A transition effect matrix (TEM) is a quantum generalization of a classical stochastic matrix. By employing a TEM we obtain a quantum generalization of a classical Markov chain. We first discuss state and operator dynamics for a quantum Markov chain. We then consider various types of TEMs and vector states. In particular, we study invariant, equilibrium and singular vector states and investigate projective, bistochastic, invertible and unitary TEMs.  相似文献   

5.
We argue that the complex numbers are an irreducible object of quantum probability: this can be seen in the measurements of geometric phases that have no classical probabilistic analogue. Having the complex phases as primitive ingredient implies that we need to accept nonadditive probabilities. This has the desirable consequence of removing constraints of standard theorems about the possibility of describing quantum theory with commutative variables. Motivated by the formalism of consistent histories and keeping an analogy with the theory of stochastic processes, we develop a (statistical) theory of quantum processes: they are characterized by the introduction of a density matrix on phase space paths (it thus includes phase information) and fully reproduces quantum mechanical predictions. We can write quantum differential equations (in analogy to Langevin equation) that could be interpreted as referring to individual quantum systems. We describe the reconstruction theorem by which a quantum process can yield the standard Hilbert space structure if the Markov property is imposed. We discuss the relevance of our results for the interpretation of quantum theory (a sample space is possible if probabilities are nonadditive) and quantum gravity (the Hilbert space arises here after the consideration of a background causal structure).  相似文献   

6.
We consider Markov processes arising from small random perturbations of non-chaotic dynamical systems. Under rather general conditions we prove that, with large probability, the distance between two arbitrary paths starting close to a same attractor of the unperturbed system decreases exponentially fast in time. The case of paths starting in different basins of attraction is also considered as well as some applications to the analysis of the invariant measure and to elliptic problems with small parameter in front to the second derivatives. The proof is based on a multiscale analysis of the typical trajectories of the Markov process; this analysis is done using techniques involved in the proof of Anderson localization for disordered quantum systems.  相似文献   

7.
We compute the dynamical entropy in the sense of Connes, Narnhofer, and Thirring of shift automorphism of generalized quantum Markov chains as defined by Accardi and Frigerio. For any generalized quantum Markov chain defined via a finite set of conditional density amplitudes, we show that the dynamical entropy is equal to the mean entropy.Research supported in part by the Basic Science Research Program, Korean Ministry of Education, 1993–1994.  相似文献   

8.
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore the “quantum trajectory” point of view on these quantum random walks, that is, we show that measuring the position of the particle after each time-step gives rise to a classical Markov chain, on the lattice times the state space of the particle. This quantum trajectory is a simulation of the master equation of the quantum random walk. The physical pertinence of such quantum random walks and the way they can be concretely realized is discussed. Differences and connections with the already well-known quantum random walks, such as the Hadamard random walk, are established.  相似文献   

9.
We connect the notion of capacity of sets in the theory of symmetric Markov process and Dirichlet forms with the notion of tunneling through the boundary of sets in quantum mechanics. In particular we show that for diffusion processes the notion appropriate to a boundary without tunneling is more refined than simply capacity zero. We also discuss several examples in d .  相似文献   

10.
Recently, several authors studied small quantum systems weakly coupled to free boson or fermion fields at positive temperature. All the rigorous approaches we are aware of employ complex deformations of Liouvillians or Mourre theory (the infinitesimal version of the former). We present an approach based on polymer expansions of statistical mechanics. Despite the fact that our approach is elementary, our results are slightly sharper than those contained in the literature up to now. We show that, whenever the small quantum system is known to admit a Markov approximation (Pauli master equation aka Lindblad equation) in the weak coupling limit, and the Markov approximation is exponentially mixing, then the weakly coupled system approaches a unique invariant state that is perturbatively close to its Markov approximation.  相似文献   

11.
If the conditional information of a classical probability distribution of three random variables is zero, then it obeys a Markov chain condition. If the conditional information is close to zero, then it is known that the distance (minimum relative entropy) of the distribution to the nearest Markov chain distribution is precisely the conditional information. We prove here that this simple situation does not obtain for quantum conditional information. We show that for tri-partite quantum states the quantum conditional information is always a lower bound for the minimum relative entropy distance to a quantum Markov chain state, but the distance can be much greater; indeed the two quantities can be of different asymptotic order and may even differ by a dimensional factor.  相似文献   

12.
We propose and analyze a robust quantum state transfer protocol through a scalable quantum data bus that consists of a network of controlled dissipative modules. In particular, we first demonstrate the ability to achieve perfect state transfer between two distinct quantum sites which are adiabatically coupled to the data bus in non-dissipative situation. We then consider the role of dissipation in adiabatic quantum state transfer via using Born–Markov master equation in the standard Lindblad form. Numerical simulation shows that the dissipation effect on the quality of transmission can be suppressed by engineering the network couplings of data bus properly.  相似文献   

13.
C.H. Fleming  B.L. Hu 《Annals of Physics》2012,327(4):1238-1276
We treat several key stochastic equations for non-Markovian open quantum system dynamics and present a formalism for finding solutions to them via canonical perturbation theory, without making the Born–Markov or rotating wave approximations (RWA). This includes master equations of the (asymptotically) stationary, periodic, and time-nonlocal type. We provide proofs on the validity and meaningfulness of the late-time perturbative master equation and on the preservation of complete positivity despite a general lack of Lindblad form. More specifically, we show how the algebraic generators satisfy the theorem of Lindblad and Gorini, Kossakowski and Sudarshan, even though the dynamical generators do not. These proofs ensure the mathematical viability and physical soundness of solutions to non-Markovian processes. Within the same formalism we also expand upon known results for non-Markovian corrections to the quantum regression theorem. Several directions where these results can be usefully applied to are also described, including the analysis of near-resonant systems where the RWA is inapplicable and the calculation of the reduced equilibrium state of open systems.  相似文献   

14.
We present a theorem which elucidates the connection between self-duality of Markov processes and representation theory of Lie algebras. In particular, we identify sufficient conditions such that the intertwining function between two representations of a certain Lie algebra is the self-duality function of a (Markov) operator. In concrete terms, the two representations are associated to two operators in interwining relation. The self-dual operator, which arise from an appropriate symmetric linear combination of them, is the generator of a Markov process. The theorem is applied to a series of examples, including Markov processes with a discrete state space (e.g. interacting particle systems) and Markov processes with continuous state space (e.g. diffusion processes). In the examples we use explicit representations of Lie algebras that are unitarily equivalent. As a consequence, in the discrete setting self-duality functions are given by orthogonal polynomials whereas in the continuous context they are Bessel functions.  相似文献   

15.
Nonrelativistic quantum mechanics can be derived from real Markov diffusion processes by extending the concept of probability measure to the complex domain. This appears as the only natural way of introducing formally classical probabilistic concepts into quantum mechanics. To every quantum state there is a corresponding complex Fokker-Planck equation. The particle drift is conditioned by an auxiliary equation which is obtained through stochastic energy conservation; the logarithmic transform of this equation is the Schrödinger equation. To every quantum mechanical operator there is a stochastic process; the replacement of operators by processes leads to all the well-known results of quantum mechanics, using stochastic calculus instead of formal quantum rules. Comparison is made with the classical stochastic approaches and the Feynman path integral formulation.  相似文献   

16.
In the context of Markov processes, both in discrete and continuous setting, we show a general relation between duality functions and symmetries of the generator. If the generator can be written in the form of a Hamiltonian of a quantum spin system, then the “hidden” symmetries are easily derived. We illustrate our approach in processes of symmetric exclusion type, in which the symmetry is of SU(2) type, as well as for the Kipnis-Marchioro-Presutti (KMP) model for which we unveil its SU(1,1) symmetry. The KMP model is in turn an instantaneous thermalization limit of the energy process associated to a large family of models of interacting diffusions, which we call Brownian energy process (BEP) and which all possess the SU(1,1) symmetry. We treat in details the case where the system is in contact with reservoirs and the dual process becomes absorbing.  相似文献   

17.
We give a proper definition of a quantum Gauss process. From there we derive the generator (dissipative Liouville operator) of a Gauss Markov process for a quantum oscillator without using a microscopic model. Dissipative Liouville operators derived from microscopic models are recovered as special cases. The dynamics following from the generator is investigated by studying the relaxation of the first moments and equilibrium correlations.Work supported by Deutsche Forschungsgemeinschaft  相似文献   

18.
This article presents an overview for the theory of sequential products of quantum effects. We first summarize some of the highlights of this relatively recent field of investigation and then provide some new results. We begin by discussing sequential effect algebras which are effect algebras endowed with a sequential product satisfying certain basic conditions. We then consider sequential products of (discrete) quantum measurements. We next treat transition effect matrices (TEMs) and their associated sequential product. A TEM is a matrix whose entries are effects and whose rows form quantum measurements. We show that TEMs can be employed for the study of quantum Markov chains. Finally, we prove some new results concerning TEMs and vector densities.  相似文献   

19.
20.
T.D. Frank 《Physica A》2007,382(2):453-464
One goal of this mini-tutorial is to provide an introduction into the theory of measure-valued Markov processes and nonlinear martingales defined by strongly nonlinear Fokker-Planck equations and to discuss the physical relevance of the associated processes. Another goal is to reply to McCauley's comment on T.D. Frank [Physica A 331, 391 (2004)]. The tutorial addresses in detail two approaches found in physics and mathematics. The first approach exploits a mapping between linear and nonlinear Fokker-Planck equations. The second approach exploits martingale theory. Several examples of Markov processes and martingales in quantum mechanical, nonextensive, and self-organizing systems defined by nonlinear Fokker-Planck equations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号