首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Using normal human fibroblasts we have determined the ability of far (254 nm), mid (310 nm) or near (365 nm) UV radiation to: (i) induce pyrimidine dimers (detected as UV endonuclease sensitive sites) and DNA single-strand breaks (detected in alkali); (ii) elicit excision repair, monitored as unscheduled DNA synthesis (UDS); and (iii) reduce colony-forming ability. Unscheduled DNA synthesis studies were also performed on dimer excision-defective xeroderma pigmentosum (XP) cells, and the survival studies were extended to include XP and Bloom's syndrome (BS) strains. UV-induced cell killing in normal, BS and XP cells was found to relate to an equivalent dimer load per genome after 254 or 310 nm exposure, whereas at 365 nm the lethal effects of non-dimer damage appeared to predominate. Lethality could not be correlated with DNA strand breakage at any wavelength. The two XP strains examined showed the same relative UDS repair deficiency at the two shorter wavelengths in keeping with a predominant role for pyrimidine dimer repair in the expression of UDS. However, UDS was not detected in 365 nm UV-irradiated normal and XP cells despite dimer induction; this effect was due to the inhibition of DNA repair functions since 365 nm UV-irradiated normal cells showed reduced capacity to perform UDS subsequent to challenge with 254 nm UV radiation.
In short, the near UV component of sunlight apparently induces biologically important non-dimer damage in human cells and inhibits DNA repair processes, two actions which should be considered when assessing the deleterious actions of solar UV.  相似文献   

2.
Abstract— Enhanced reactivation of UV- and y-irradiated herpes virus was investigated by the plaque assay onCV–1 monkey kidney monolayer cells irradiated with UV light or X-rays. Both UV- and X-irradiatedCV–1 cells showed enhancement of survival of UV-irradiated virus, while little or no enhancement was detected for y-irradiated virus assayed on UV- or X-irradiated cells. The enhanced reactivation of UV-irradiated virus was greater when virus infection was delayed 24 or 48 h, than for infection immediately following the irradiation of cells. It is demonstrable that the UV- or X-irradiatedCV–1 cells are able to enhance the repair of UV damaged herpes virus DNA, but not of y-ray damaged ones.  相似文献   

3.
Abstract— 4ells from patients with the sun sensitive cancer-prone disease, xeroderma pigmentosum (XP) have defective repair of UV damaged DNA with reduced excision of the major photoproduct, the cyclobutane type pyrimidine dimer. Other (non-dimer) photoproducts, have recently been implicated in UV mutagenesis. Utilizing an expression vector host cell reactivation assay, we studied UV damaged transfecting DNA that was treated by in vitro photoreactivation to reverse pyrimidine dimers while not altering other photoproducts. We found that the reduced expression of a UV damaged transfecting plasmid in XP complementation group A cells is only partially reversed by photoreactivation. E. coli photolyase treatment of pSV2catSVgpt exposed to 100 or 200 J m−2 of 254 nm radiation removed 99% of the T4 endonuclease V sensitive sites. Transfection of XP12BE(SV40) cells with photoreactivated pSV2catSVgpt showed residual inhibition corresponding to 25 to 37% of the lethal hits to the cat gene. This residual inhibition corresponds to the fraction of non-dimer photoproducts induced by UV. This result implies that XP12BE(SV40) cells do not repair most of the non-dimer photoproducts in DNA.  相似文献   

4.
Abstract— Photoreactivation in the extreme halophilic archaebacterium Halobacterium cutirubrum was studied both in vivo and in vitro. Cells irradiated with ultraviolet (UV)-fluences up to 350 J/m2 could be completely photoreactivated, indicating very efficient repair of pyrimidine dimers in UV-irradiated DNA. Dark repair is apparently absent in Halobacterium since liquid holding under non-growth conditions did not influence the survival of UV-irradiated cells, while cells remained completely photoreactivable with no change in the kinetics of photoreactivation. Experiments with Halobacterium isolates of different carotenoid content indicated that carotenoids do not influence either UV-inactivation or photoreactivation. Small differences in the rates of UV-inactivation and photoreactivation could be assigned to the occurrence of gas vesicles. Flash experiments and the temperature dependence of photoreactivation indicated an enzymatical reaction. This was confirmed by in vitro experiments with partially purified photoreactivating enzyme. The in vivo action spectrum of photoreactivation showed a main band in the 400-470 nm region with a maximum at 440 nm. Comparison with action spectra of other microorganisms classified the Halobacterium enzyme as a 8-hydroxy-5-deazaflavin type photoreactivating enzyme.  相似文献   

5.
Abstract— Cultured cells derived from a goldfish were irradiated with 254nm ultraviolet light. Cell survival and splitting of pyrimidine dimers after photoreactivation treatment with white fluorescent lamps were examined by colony forming ability and by a direct dimer assay, respectively. When UV-irradiated (5 J/m2) cells were illuminated by photoreactivating light, cell survival was enhanced up to a factor of 9 (40min) followed by a decline after prolonged exposures. Exposure of UV-irradiated (15 J/m2) cells to radiation from white fluorescent lamps reduced the amounts of thymine-containing dimers in a photoreactivating fluence dependent manner, up to about 60% reduction at 120 min exposure. Keeping UV-irradiated cells in the dark for up to 120min did not affect either cell survival or the amount of pyrimidine dimers in DNA, indicating that there were not detectable levels of a dark-repair system in the cells under our conditions. Correlation between photoreactivation of colony forming ability and photoreactivation of the pyrimidine dimers was demonstrated, at least at relatively low fluences of photoreactivating light.  相似文献   

6.
7.
Abstract— The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus grown in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes simplex.  相似文献   

8.
Cultured human cells were treated with direct sunlight under conditions which minimised the hypertonic, hyperthermic and fixative effects of solar radiation. Sunlight produced similar levels of DNA strand breaks as equitoxic 254 nm UV in two fibroblast strains and a melanoma cell line, but DNA repair synthesis and inhibition of semiconservative DNA synthesis and of DNA chain elongation were significantly less for sunlight-exposed cells. DNA breaks induced by sunlight were removed more rapidly. Thus, the repair of solar damage differs considerably from 254 nm UV repair. Glass-filtered sunlight (> 320 nm) was not toxic to cells and did not induce repair synthesis but gave a low level of short-lived DNA breaks and some inhibition of DNA chain elongation; thymidine uptake was enhanced. Filtered sunlight slightly enhanced UV-induced repair synthesis and UV toxicity; photoreactivation of UV damage was not found. Attempts to transform human fibroblasts using sunlight, with or without phorbol ester, were unsuccessful.  相似文献   

9.
10.
Exponentially growing cells of the PtK-2 line (ATCC No. CCL56, from the marsupial Potorous tridactylus) require protein and RNA synthesis in a limited period following UV-radiation damage for optimal recovery as colony formers [Overberg et al. (1988) Mutat. Res. 194, 83-92]. Overall behavior suggests the operation of damage-induced recovery processes. The capacity of confluent cell monolayers for infection with unirradiated herpes simplex virus 1 (HSV-1) is sharply reduced by UV-irradiation. We have followed capacity changes in exponentially growing cells after irradiation and varying amounts of photoreactivation by means of an infectious center assay. These changes closely parallel changes of colony formation. Spontaneous recovery of capacity in the dark occurs over approximately the same time period that the UV sensitivity of colony formation depends on macromolecular synthesis. The effect of photoreactivation is complementary rather than additive to this recovery, suggesting that the dark recovery in this period concerns pyrimidine dimers in cell DNA.  相似文献   

11.
Abstract— The survival curve obtained after UV irradiation of the unicellular cyanobacterium Synecho-cystis is typical of a DNA repair competent organism. Inhibition of DNA replication, by incubating cells in the dark, increased resistance to the lethal effects of UV at higher fluences. Exposure of irradiated cells to near ultraviolet light(350–500 nm) restored viability to pre-irradiation levels. In order to measure DNA repair activity, techniques have been developed for the chromatographic analysis of pyrimidine dimers in Synechocystis. The specificity of this method was established using a haploid strain of Sacchar-omyces cerevisiae. In accordance with the physiological responses of irradiated cells to photoreactivating light, pyrimidine dimers were not detected after photoreactivation treatment. Incubation of irradiated cells under non-photoreactivating growth conditions for 15 h resulted in complete removal of pyrimidine dimers. It is concluded that Synechocystis contains photoreactivation and excision repair systems for the removal of pyrimidine dimers.  相似文献   

12.
–Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet (UV) radiation. Since host cell reactivation of irradiated virus is a useful probe to evaluate repair in different host cells, we studied such host cell reactivation in CS and in other diseases with retinal degeneration. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors. two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves (log survival vs linear fluence) in all cell lines showed two components: a very sensitive initial component (not quantitated in this study) followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS. and the XP patient. We propose that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration.  相似文献   

13.
Abstract— Datura stramonium L. is a local lesion host for TMV-RNA and DNA-containing cauliflower mosaic virus (CAMV). Datura can photorepair UV-damaged TMV-RNA and CAMV, giving photoreac-tivation sectors of 0.40 and 0. 33 , respectively. Dose response curves for photoreactivation of TMV-RNA and CAMV show that 4540 min of cool white light (15 W.m-2) is required for maximum photoreactivation. Blue light and near UV are equally effective in photoreactivating UV-irradiated TMV-RNA, whereas near UV is initially more effective than blue light for the photorepair of UV-inactivated CAMV. Higher doses of near UV apparently inactivate the CAMV photorepair system. In the case of CAMV, photoreactivating light must be applied immediately after inoculation with the virus. Two to three hours of incubation in the dark after inoculation results in complete loss of response to photoreactivating irradiation. In contrast, limited photoreactivation of TMV-RNA occurs even after 4 h of dark incubation after inoculation, although photoreactivating irradiation is most effective when applied immediately after inoculation. Light is required for the maintenance of photoreactivation for both TMV-RNA and CAMV. Daturas placed in the dark for six days lose their ability to photoreacti-vate. Recovery of the TMV-RNA photorepair system is rapid; complete recovery attained with 90 or more min of white light (15 W m-'). Recovery of CAMV photorepair system is slow; 90% recovery attained after only 20 h of light. However, full recovery can be induced by as little as 6h of light when CAMV is inoculated 24 h after the onset of illumination. These results suggest two photorepair systems are present in Datura .  相似文献   

14.
Abstract— UV-enhanced reactivation of minute-virus-of-mice (MVM), an autonomous parvovirus, was studied in parasynchronous mouse A9 cells. The survival of UV-irradiated MVM is increased in cells which have been UV-irradiated prior to infection. UV-enhanced reactivation can be explained neither by facilitated plaque detection on UV-treated indicator cells, nor by altered kinetics of virus production by UV-irradiated cells. No effect of the multiplicity of infection on virus survival was detected in unirra-diated or irradiated cells. The magnitude of UV-enhanced reactivation is a direct exponential function of the UV dose administered to the virus while virus survival is inversely proportional to the UV dosage. The expression of UV-enhanced reactivation can be activated in cells arrested in G0, it requires de novo protein synthesis and it is maximal when cells are irradiated 30 h before the onset of viral DNA replication. Early phases of the viral cycle, such as adsorption to cellular receptors, migration to the nucleus and uncoating, were not affected by cell irradiation and are unlikely targets of the UV-enhanced reactivation function(s). These results, together with the single-strandedness of the viral genome, strongly suggest that the step stimulated in UV-irradiated cells functions concomitant with, or subsequent to, viral DNA replication.  相似文献   

15.
Radioimmunoassays were used to investigate the repair of cyclobutane pyrimidine dimers and pyrimidine (6-4)pyrimidone photoproducts ((6-4] photoproducts) in the epidermis of the South American opossum, Monodelphis domestica. In the absence of photoreactivating light, both types of photodamage were excised with similar kinetics, 50% of the damage remaining 8 h after UV irradiation in vivo. Exposure of UV-irradiated skin to photoreactivating light resulted in removal of most of the cyclobutane dimers and an enhanced rate of (6-4) photoproduct repair. Photoenhanced excision repair of non-dimer damage increases the range of biologically effective lesions removed by in vivo photoreactivation.  相似文献   

16.
Abstract— The addition of 8-methoxypsoralen to cultures of African green monkey cells (CV-I) sensitized the inactivation by near UV radiation (302–370 nm) of the ability of the cells to host herpes simplex virus. No sensitizing effect by drug addition was noted for far UV radiation (232–297 nm). An action spectrum for the photosensitized inactivation of this cellular parameter was obtained. This action spectrum is consistent with the absorption spectrum of 8-methoxypsoralen.  相似文献   

17.
Excision repair of DNA damage was measured by the photolysis of bromodeoxyuridine incorporated into parental DNA during repair in Chinese hamster V-79 cells treated with 254 nm of ultraviolet radiation (UV), 7,12-dimethylbenz[a]anthracene 5,6-oxide (DMBA-epoxide), N-acetoxy-2-acetylaminofluorene (AAAF), 4-nitroquinoline 1-oxide (4NQO), 2-methoxy-6-chloro-9-[3(ethyl-2-chloroethyl)-aminopropylamino]acridine dihydrochloride (ICR-170), X-rays, ethylmethanesulfonate (EMS), methyl methanesulfonate (MMS) and combinations of these agents. Compared to normal human cells V-79 were defective in repair of UV lesions and the lesions induced by the UV-mimetic chemicals. The extent of the defects varied from 10 to 50% and was similar to those in Xeroderma pigmentosum group C cells (XP C). V-79 cells repaired X-ray damage and damage from the alkylating agents EMS and MMS to the same extent as human cells. Repair was additive after a combination of UV plus MMS indicating, as expected, that there are different rate-limiting steps for removal of the damages from these agents. Repair was less than additive in cells treated with UV plus ICR-170, AAAF plus ICR-170, AAAF plus 4NQO, and 4NQO plus ICR-170 and approximately equal to that observed for the higher of the two agents separately, indicating that there may be similar rate-limiting steps for removal of lesions. Although the results on repair after combinations of UV plus 4NQO, UV plus DMBA-epoxide or X-rays plus MMS were difficult to interpret, there was not any inhibition of repair in these combinations.  相似文献   

18.
The DNA repair capacities of three unrelated Cockayne syndrome (CS) fibroblast strains were compared to that of three unrelated xeroderma pigmentosum (XP) strains for three different DNA damaging agents using a sensitive host cell reactivation (HCR) technique. Adenovirus type 2 (Ad 2) was treated with either UV light, gamma-rays or sunlamp-irradiation and subsequently assayed for its ability to form viral structural antigens (Vag) in the CS and XP strains using immunofluorescent straining. D37 values for the survival of Ad 2 Vag synthesis in the CS and XP strains, expressed as a percentage of those obtained in normal strains, were used as a measure of DNA repair capacity. Percent HCR values in the XP strains XP25RO, XP2BE and XP5BE respectively were lowest for UV (6, 14 and 6%), intermediate for sunlamp-irradiation (18, 32 and 10%) and highest for gamma-irradiation (65, 61 and 60%), whereas for the CS strains CS1BE, CS3BE and CS278CTO respectively, percent HCR values were lowest for UV (26, 30 and 34%), intermediate for gamma-irradiation (61, 64 and 69%) and near normal for sunlamp-irradiation (82, 73 and 89%). These results suggest that the 'spectrum of lesions' which is defectively repaired in CS is not the same as that which is defectively repaired in XP.  相似文献   

19.
— Herpes simplex virus — type 1 (HSV-I) plaque-forming ability and plaque size were measured on C3H/1OT1/2 cell monolayers as functions of pretreatment dose with UV light at different times before inoculation with virus, in order to determine if UV-enhanced reactivation (ER) of UV-irradiated virus. as well as associated phenomena, could be obtained in this cell system. The number of virus plaques observed (i.e. the capacity of the cells to support virus growth) and the size of the plaques were found to increase substantially with pretreatment of the cells with UV light. However, no significant ER was observed. Therefore, the mechanisms responsible for the increases in plaque size and cell capacity seem to be independent of those responsible for ER. In work by others. C3H/l0T1/2 cells have hcen transformed by UV light at doses similar to those used in this study; the absence of ER of UV-irradiated virus in this study indicates that the mechanism underlying ER is not required for transformation.  相似文献   

20.
Abstract— Ultraviolet (UV)-irradiated Escherichia coli K–12 uvrA cells showed higher survival if plated on minimal growth medium rather than on rich growth medium, i.e., they showed minimal medium recovery (MMR). A 2-hour treatment of UV-irradiated cells with rifampicin inhibited the subsequent expression of MMR, and produced a large reduction in survival. We have recently isolated a new mutant ( mmrA1 ) that does not show MMR. The mmrA mutation protected UV-irradiated uvrA cells from the effect of rich growth medium on survival, but not from the effect of rifampicin on survival. DNA daughter-strand gap (DSG) repair in UV-irradiated (4 J/m2) uvrA cells was inhibited to the same degree whether rich growth medium was added immediately after irradiation or after 10 min of postirradiation incubation in minimal growth medium. However, chloramphenicol added immediately after irradiation greatly reduced this repair; there was less reduction if it was added 10 min after UV irradiation. These findings suggest that MMR is an inducible repair phenomenon, and that rich growth medium inhibits this repair process itself rather than its induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号