首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
A well known family of minimally nonideal matrices is the family of the incidence matrices of chordless odd cycles. A natural generalization of these matrices is given by the family of circulant matrices. Ideal and minimally nonideal circulant matrices have been completely identified by Cornuéjols and Novick [G. Cornuéjols, B. Novick, Ideal 0 - 1 matrices, Journal of Combinatorial Theory B 60 (1994) 145–157]. In this work we classify circulant matrices and their blockers in terms of the inequalities involved in their set covering polyhedra. We exploit the results due to Cornuéjols and Novick in the above-cited reference for describing the set covering polyhedron of blockers of circulant matrices. Finally, we point out that the results found on circulant matrices and their blockers present a remarkable analogy with a similar analysis of webs and antiwebs due to Pêcher and Wagler [A. Pêcher, A. Wagler, A construction for non-rank facets of stable set polytopes of webs, European Journal of Combinatorics 27 (2006) 1172–1185; A. Pêcher, A. Wagler, Almost all webs are not rank-perfect, Mathematical Programming Series B 105 (2006) 311–328] and Wagler [A. Wagler, Relaxing perfectness: Which graphs are ‘Almost’ perfect?, in: M. Groetschel (Ed.), The Sharpest Cut, Impact of Manfred Padberg and his work, in: SIAM/MPS Series on Optimization, vol. 4, Philadelphia, 2004; A. Wagler, Antiwebs are rank-perfect, 4OR 2 (2004) 149–152].  相似文献   

8.
Perfect graphs constitute a well-studied graph class with a rich structure, which is reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB(G) equals the fractional stable set polytope QSTAB(G). The dilation ratio of the two polytopes yields the imperfection ratio of G. It is NP-hard to compute and, for most graph classes, it is even unknown whether it is bounded. For graphs G such that all facets of STAB(G) are rank constraints associated with antiwebs, we characterize the imperfection ratio and bound it by 3/2. Outgoing from this result, we characterize and bound the imperfection ratio for several graph classes, including near-bipartite graphs and their complements, namely quasi-line graphs, by means of induced antiwebs and webs, respectively.   相似文献   

9.
This paper studies two polytopes: the complete set packing and set partitioning polytopes, which are both associated with a binary n-row matrix having all possible columns. Cuts of rank 1 for the latter polytope play a central role in recent exact algorithms for many combinatorial problems, such as vehicle routing. We show the precise relation between the two polytopes studied, characterize the multipliers that induce rank 1 clique facets and give several families of multipliers that yield other facets.  相似文献   

10.
It has been conjectured that for every claw-free graph G the choice number of G is equal to its chromatic number. We focus on the special case of this conjecture where G is perfect. Claw-free perfect graphs can be decomposed via clique-cutset into two special classes called elementary graphs and peculiar graphs. Based on this decomposition we prove that the conjecture holds true for every claw-free perfect graph with maximum clique size at most 4.  相似文献   

11.
Construct a graph as follows. Take a circle, and a collection of intervals from it, no three of which have union the entire circle; take a finite set of points V from the circle; and make a graph with vertex set V in which two vertices are adjacent if they both belong to one of the intervals. Such graphs are “long circular interval graphs,” and they form an important subclass of the class of all claw-free graphs. In this paper we characterize them by excluded induced subgraphs. This is a step towards the main goal of this series, to find a structural characterization of all claw-free graphs.This paper also gives an analysis of the connected claw-free graphs G with a clique the deletion of which disconnects G into two parts both with at least two vertices.  相似文献   

12.
Shepherd95 proved that the stable set polytopes of near-bipartite graphs are given by constraints associated with the complete join of antiwebs only. For antiwebs, the facet set reduces to rank constraints associated with single antiwebs by Wagler2004. We extend this result to a larger graph class, the complements of fuzzy circular interval graphs, recently introduced in ChudnovskySeymour2004. Received: November 2004 / Revised version: June 2005  相似文献   

13.
Chudnovsky and Seymour proved that every connected claw-free graph that contains a stable set of size 3 has chromatic number at most twice its clique number. We improve this for small clique size, showing that every claw-free graph with clique number at most 3 is 4-choosable and every claw-free graph with clique number at most 4 is 7-choosable. These bounds are tight.  相似文献   

14.
在文献[3]中介绍了一个新的图类-P3-支配图.这个图类包含所有的拟无爪图,因此也包含所有的无爪图.在本文中,我们证明了每一个点数至少是3的三角形连通的P3-支配图是哈密尔顿的,但有一个例外图K1,1,3.同时,我们也证明了k-连通的(k≥2)的P3-支配图是哈密尔顿的,如果an(G)≤k,但有两个例外图K1,1,3 and K2,3.  相似文献   

15.
An Erratum has been published for this article in Journal of Graph Theory 48: 329–330, 2005 . Let M be a set of positive integers. The distance graph generated by M, denoted by G(Z, M), has the set Z of all integers as the vertex set, and edges ij whenever |i?j| ∈ M. We investigate the fractional chromatic number and the circular chromatic number for distance graphs, and discuss their close connections with some number theory problems. In particular, we determine the fractional chromatic number and the circular chromatic number for all distance graphs G(Z, M) with clique size at least |M|, except for one case of such graphs. For the exceptional case, a lower bound for the fractional chromatic number and an upper bound for the circular chromatic number are presented; these bounds are sharp enough to determine the chromatic number for such graphs. Our results confirm a conjecture of Rabinowitz and Proulx 22 on the density of integral sets with missing differences, and generalize some known results on the circular chromatic number of distance graphs and the parameter involved in the Wills' conjecture 26 (also known as the “lonely runner conjecture” 1 ). © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 129–146, 2004  相似文献   

16.
A 2-join is an edge cutset that naturally appears in decomposition of several classes of graphs closed under taking induced subgraphs, such as perfect graphs and claw-free graphs. In this paper we construct combinatorial polynomial time algorithms for finding a maximum weighted clique, a maximum weighted stable set and an optimal coloring for a class of perfect graphs decomposable by 2-joins: the class of perfect graphs that do not have a balanced skew partition, a 2-join in the complement, nor a homogeneous pair. The techniques we develop are general enough to be easily applied to finding a maximum weighted stable set for another class of graphs known to be decomposable by 2-joins, namely the class of even-hole-free graphs that do not have a star cutset.We also give a simple class of graphs decomposable by 2-joins into bipartite graphs and line graphs, and for which finding a maximum stable set is NP-hard. This shows that having holes all of the same parity gives essential properties for the use of 2-joins in computing stable sets.  相似文献   

17.
Convex polytopes have interested mathematicians since very ancient times. At present, they occupy a central place in convex geometry, combinatorics, and toric topology and demonstrate the harmony and beauty of mathematics. This paper considers the problem of describing the f-vectors of simple flag polytopes, that is, simple polytopes in which any set of pairwise intersecting facets has nonempty intersection. We show that for each nestohedron corresponding to a connected building set, the h-polynomial is a descent-generating function for some class of permutations; we also prove Gal’s conjecture on the nonnegativity of γ-vectors of flag polytopes for nestohedra constructed over complete bipartite graphs.  相似文献   

18.
Equistable graphs are graphs admitting positive weights on vertices such that a subset of vertices is a maximal stable set if and only if it is of total weight 1. Strongly equistable graphs are graphs such that for every and every nonempty subset T of vertices that is not a maximal stable set, there exist positive vertex weights assigning weight 1 to every maximal stable set such that the total weight of T does not equal c . General partition graphs are the intersection graphs of set systems over a finite ground set U such that every maximal stable set of the graph corresponds to a partition of U . General partition graphs are exactly the graphs every edge of which is contained in a strong clique. In 1994, Mahadev, Peled, and Sun proved that every strongly equistable graph is equistable, and conjectured that the converse holds as well. In 2009, Orlin proved that every general partition graph is equistable, and conjectured that the converse holds as well. Orlin's conjecture, if true, would imply the conjecture due to Mahadev, Peled, and Sun. An “intermediate” conjecture, posed by Miklavi? and Milani? in 2011, states that every equistable graph has a strong clique. The above conjectures have been verified for several graph classes. We introduce the notion of equistarable graphs and based on it construct counterexamples to all three conjectures within the class of complements of line graphs of triangle‐free graphs. We also show that not all strongly equistable graphs are general partition.  相似文献   

19.
设 G=(V,E) 为简单图,图 G 的每个至少有两个顶点的极大完全子图称为 G 的一个团. 一个顶点子集 S\subseteq V 称为图 G 的团横贯集, 如果 S 与 G 的所有团都相交,即对于 G 的任意的团 C 有 S\cap{V(C)}\neq\emptyset. 图 G 的团横贯数是图 G 的最小团横贯集所含顶点的数目,记为~${\large\tau}_{C}(G)$. 证明了棱柱图的补图(除5-圈外)、非奇圈的圆弧区间图和 Hex-连接图这三类无爪图的团横贯数不超过其阶数的一半.  相似文献   

20.
The circular chromatic number is a refinement of the chromatic number of a graph. It has been established in [3,6,7] that there exists planar graphs with circular chromatic number r if and only if r is a rational in the set {1} ∪ [2,4]. Recently, Mohar, in [1,2] has extended the concept of the circular chromatic number to digraphs and it is interesting to ask what the corresponding result is for digraphs. In this article, we shall prove the new result that there exist planar digraphs with circular chromatic number r if and only if r is a rational in the interval [1,4]. © 2006 Wiley Periodicals, Inc. J Graph Theory 55: 14–26, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号