首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Due to the short loading times and high deformation rates inherent to impact experiments, measurement of the occurring deformations is not straightforward. Presented in this paper is a technique to obtain the displacements and deformations of a specimen subjected to a uni-axial impact load. During the experiment the deformation of a line grating attached to the specimen is captured using a streak camera. From the recorded deforming grating the specimen displacements are automatically derived using an advanced numerical algorithm, based on the interference between the specimen grating and a virtual reference grating. Numerical interference is considered because it allows that the pitch of the reference grating is adapted to the changing amplitude of the deformation. Indeed, at each moment of the deformation process the pitch of the reference grating is chosen such that the highest possible accuracy and sensitivity is guaranteed. Because of this, large changes in deformation amplitude are allowed, and the technique is applicable to a wide range of materials. Eventual imperfections of the specimen grating and temperature effects are taken into account. Specimen displacements are extracted automatically by means of a phase-shifting technique.

The non-contact measurement technique yields high resolution, quantitative information on the specimen deformation, along the entire length of the specimen and during the full duration of the experiment. Interaction by the operator is excluded. Results are presented of a high strain rate tensile test on a steel sheet specimen showing local deformations up to about 170%.  相似文献   


2.
For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement.In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good performance on temperature measurement, which supports our numerical evaluation and demonstrates the potential feasibility for metallic surface high temperature measurement with this method.  相似文献   

3.
The speckle interferometer based on multi-camera technologies using two cameras is applied to a dynamic measurement. The new speckle interferometer is constructed by a prism array and two cameras. A phenomenon, which a bearing-ball collides against a thin polymer film, is investigated by the proposed interferometer. Then, it is shown that the local maximum deformation of the thin film by the collision is about 1.0 μm. Such a deformation process can precisely be analyzed by this method without any troubles of optical dislocations. In the results, it is confirmed that a large deformation process can be analyzed by accumulating measured results of small deformation in every small continuous analysis. Furthermore, it is estimated that the measurement precision of this method is about 5 nm as experimental results.  相似文献   

4.
The optical method is one of the most accurate methods for the 3D angular deformations measurement. However, the measured results fluctuate around a mean value as a result of the impact of the atmospheric turbulence, and the relationship between the fluctuation and the atmospheric turbulence is unclear. In this paper, we propose an optical 3D angular deformations measurement method to analyze the optical wave propagation, and study the impact of the atmospheric turbulence. The fluctuations of the three deformation angles are calculated in different atmospheric turbulences. It is found that this optical method is not suitable for high accuracy measurement with the refractive-index structure parameter larger than 10−14 m−2/3. When the widths of the crosshairs fringes are different, the impacts of the atmospheric turbulence are nearly the same. It is also found that the impact of the atmospheric turbulence can be reduced by increasing the gray value of the image.  相似文献   

5.
The results of measurement of fluctuations of brightness temperature T in the region of exposure to laser radiation of a 3 mm-thick steel plate are presented. The local luminosity along the cut-front was measured using two-color multichannel pyrometer. Cutting trials were carried out with CO2 laser (10.6 μm, 1200 W) and fiber laser (1.07 μm, 1800 W). Special attention was given to the frequency range of temperature fluctuations above frequency of melt overflight, aiming on on-line monitoring applications. It is shown that local fluctuations of T are related to local melt’s surface deformations due to unequal radiation absorption; thus the noise spectrum of T fluctuations reflects turbulent surface deformation, caused by gas jet and capillary waves. It is also shown that the thermo-capillary effect with capillary-wave turbulence generation can be observed in case of exposure to 10.6 μm radiation with a laser intensity of about 1 MW/cm2. The power law of “−7/6” describes the spectrum of the T fluctuation variance in this case of anomalous absorption of radiation, and the standard deviation of T is in excess of 10 K for a frequency of 14 kHz. There is no such effect in case of fiber-laser radiation applying, and the source of the capillary waves is only forced low-frequency deformations of the melt surface. The standard deviation of T does not exceed 3 K on the frequency of 14 kHz, and above, and a power law of the spectrum fluctuation is described by about “−3” in that range.  相似文献   

6.
Hao Chen  Tomy Varghese 《Ultrasonics》2009,49(4-5):472-483
Shear stresses are always present during quasi-static strain imaging, since tissue slippage occurs along the lateral and elevational directions during an axial deformation. Shear stress components along the axial deformation axes add to the axial deformation while perpendicular components introduce both lateral and elevational rigid motion and deformation artifacts into the estimated axial and lateral strain tensor images. A clear understanding of these artifacts introduced into the normal and shear strain tensor images with shear deformations is essential. In addition, signal processing techniques for improved depiction of the strain distribution is required. In this paper, we evaluate the impact of artifacts introduced due to lateral shear deformations on the normal strain tensors estimated by varying the lateral shear angle during an axial deformation. Shear strains are quantified using the lateral shear angle during the applied deformation. Simulation and experimental validation using uniformly elastic and single inclusion phantoms were performed. Variations in the elastographic signal-to-noise and contrast-to-noise ratios for axial deformations ranging from 0% to 5%, and for lateral deformations ranging from 0 to 5° were evaluated. Our results demonstrate that the first and second principal component strain images provide higher signal-to-noise ratios of 20 dB with simulations and 10 dB under experimental conditions and contrast-to-noise ratio levels that are at least 20 dB higher when compared to the axial and lateral strain tensor images, when only lateral shear deformations are applied. For small axial deformations, the lateral shear deformations significantly reduces strain image quality, however the first principal component provides about a 1–2 dB improvement over the axial strain tensor image. Lateral shear deformations also significantly increase the noise level in the axial and lateral strain tensor images with larger axial deformations. Improved elastographic signal and contrast-to-noise ratios in the first principal component strain image are always obtained for both simulation and experimental data when compared to the corresponding axial strain tensor images in the presence of both axial and lateral shear deformations.  相似文献   

7.
This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module’s maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module’s maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m − 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.  相似文献   

8.
Thin films now are widely used in micro devices and structures, such as MEMS, electronic packaging, micro sensors, and so on. Their performances highly affect the reliability of the devices. Therefore, it is important to investigate the deformation and the failure mechanism of thin films. In this paper, we present two experimental methods to measure the mechanical properties of thin films. In the first method, a double-field-of-view electronic speckle pattern interferometry system (ESPI) and an integrated deformation and load measurement system are employed, which allows in situ and real-time measurements of full-field deformations of the thin films and microforces under uniaxial tensile test. In the second method, the array microindentation markers were indented on the surface of the thin film using a nanoindenter and the microregion deformations of the tested thin films were measured. In the proposed methods, the tested thin films can be made of metals, oxide ceramics, and multi-layer composites of thickness from several tens micrometers to less than a micron, and the tensile loads from 88 μN to 15 N for the first method or up to 100 N to the second one. The underlying principle of the methods and the experimental set-ups are presented. The deformations of Au and Au/Cr multi-layer films, and the pure Ni films are measured. The performance of the methods and the testing systems are also discussed.  相似文献   

9.
The alkali halide NaCl (Common salt) is an environmentally-abundant phosphor of considerable potential for retrospective dosimetry and radiological event analysis due to its high sensitivity to ionising radiation when analysed by Thermoluminescence (TL), Optically-stimulated luminescence (OSL) or Infrared-stimulated luminescence (IRSL). We report here aspects of luminescence from NaCl relevant to the development of valid protocols for measurement of recent ionising radiation exposure. The timescale of interest in this application is from days to decades, hence our emphasis is on detection and characterisation of TL emission in the 100–300 °C range, and of OSL and IRSL emissions measured following only low temperature preheating (160 °C). A collection of 19 salt samples was assembled, including samples of rock salt and domestic salt produced by evaporation from brine. Analysis of TL emission spectral changes, together with previously reported TL, OSL and IRSL sensitivity changes, confirmed activation of sensitivity change by exposure to temperatures exceeding 160 °C. Kinetic analysis using Chen's method found E = 0.943 eV and s = 5.1 × 1011 s?1 for the 100 °C TL peak, giving a lifetime at 20 °C consistent with previous calculations and in the range of 7–14 h.  相似文献   

10.
Improvements of a method for measurement of continuous displacements and deformations with digital phase shifting speckle pattern interferometry are presented. The method is based on an algorithm that, with the knowledge of the initial phase, only needs one image at a time to evaluate continuos phase changes due to object deformations. In the improved method, the initial random phase of the speckle pattern is evaluated using a number of phase-shifted images before the deformation under study. This is used for increasing the accuracy of the initial phase estimation and reducing influences from image noise and other measurement disturbances. The phase-shifted speckle patterns are used as references for comparison with the speckle patterns of the deformed object, thereby increasing the reliability and accuracy of the phase estimations of the deformed patterns. The technique can be used for measuring deformations such as transients and other dynamic events, heat expansion as well as other phenomena where it is difficult to accomplish phase shifting during deformation.  相似文献   

11.
Electrical and optical activation studies of AlxGa1−xN (x = 0.11 and 0.21) implanted with silicon were made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1 × 1014 to 1 × 1015 cm−2 at room temperature. The implanted samples were subsequently annealed from 1100 to 1300 °C for 20 min in a nitrogen environment. A maximum electrical activation efficiency of 91% was obtained for the Al0.11Ga0.89N implanted with the highest dose of 1 × 1015 cm−2 even after annealing at 1150 °C. 100% activation efficiencies were successfully obtained for the Al0.21Ga0.79N samples after annealing at 1300 °C for both doses of 5 × 1014 and 1 × 1015 cm−2. The mobility of the Si-implanted AlxGa1−xN increases with annealing temperature, and the highest mobilities are 109 and 98 cm2/V·s for Al0.11Ga0.89N and Al0.21Ga0.79N, respectively. The cathodoluminescence (CL) spectra for all the samples exhibited a sharp neutral-donor-bound exciton peak, and the CL intensity increases with annealing temperature, indicating successive improved implantation damage recovery as the annealing temperature is increased. These results provide the optimum annealing conditions for activation of implanted Si ions in AlxGa1−xN.  相似文献   

12.
A novel instrument based on Self-mixing interferometry is proposed to simultaneously measure absolute distance and velocity. The measurement method is designed for working directly on each kind of surface, in industrial environment, overcoming also problems due to speckle pattern effect. The laser pump current is modulated at quite high frequency (40 kHz) and the estimation of the induced fringes frequency allows an almost instantaneous measurement (measurement time equal to 25 µs). A real time digital elaboration processes the measurement data and discards unreliable measurements. The simultaneous measurement reaches a relative standard deviation of about 4·10−4 in absolute distance, and 5·10−3 in velocity measurement. Three different laser sources are tested and compared. The instrument shows good performances also in harsh environment, for example measuring the movement of an opaque iron tube rotating under a running water flow.  相似文献   

13.
A new type fiber bending sensor based on a tilted fiber Bragg grating (TFBG) interacting with a multimode fiber (MMF) is presented. The sensing head is formed by insertion of a small section of MMF between a single-mode fiber (SMF) and the TFBG. The average reflective power in the cladding modes decreases with the increase of curvature. The measurement range of the curvature from 0 to 2.5 m−1 with a measurement sensitivity of −802.4 nW/m−1 is achieved. The proposed sensor is also proved as temperature-independent from the experimental investigation.  相似文献   

14.
Hybrid nanoparticles (HNPs) with zinc oxide and polymethyl metha acrylate (inorganic/ polymer) were synthesized through the exploitation of ultrasound approach. The synthesized HNPs were further characterized employing transmission electron microscopy and x-ray diffraction. ZnO-PMMA based HNPs exhibit excellent protection properties to mild steel from corrosion when gets exposed to acidic condition. Electrochemical impendence spectroscopy (EIS) analysis was accomplished to evaluate the corrosion inhibition performance of MS panel coated with 2 wt% or 4 wt% of HNPs and its comparison with bare panel and that of loaded with only standard epoxy coating., Tafel plot and Nyquist plot analysis depicted that the corrosion current density (Icorr) decreases from 16.7 A/m2 for bare material to 0.103 A/m2 for 4% coating of HNPs. Applied potential (Ecorr) values shifted from negative to positive side. These results were further supported by qualitative analysis. The images taken over a period of time indicated the increase in lifetime of MS panel from 2 to 3 days for bare panel to 10 days for HNPs coated panel, showing that ZnO-PMMA HNPs have potential application in metal protection from corrosion by forming a passive layer.  相似文献   

15.
A novel fiber-optic curvature sensor, which can measure curvature directly, has been developed in recent years. The electric current measurements system based on fiber-optic curvature sensor and electromagnetic principle is developed. A fiber-optic curvature sensor is bonded to a thin-walled cantilever and two circular magnet targets with the same parameters are configured at the tip of the cantilever symmetrically. In this case, the throughput of the sensor will be changed due to the bending deformation of cantilever, which is proportional to the electromagnetic force caused by measured electric current. Direct and alternate characteristics of the proposed measurement system are studied experimentally. The results show that the measurement errors are within the range of ±5.5 mA and the corresponding accuracy is within 1% at the current measurement range from −300 mA to 300 mA, which indicate the feasibility of the proposed measurement system.  相似文献   

16.
Rai  Atma  Thakur  Awalendra K. 《Ionics》2017,23(10):2863-2869

The feasibility of perovskite-type La0.8Na0.2Fe0.8Mn0.2O3 for structural, electrical, and electrochemical property for high rate capability in supercapacitor has been explored at room temperature. Nanocrystalline La0.8Na0.2Fe0.8Mn0.2O3 was prepared via a modified Pechini route. Structural and surface morphology was done by X-ray diffraction and field emission scanning electron microscopy, respectively. Optical band gap was evaluated to be ∼1.59 eV. The bulk conductivity of the electrode under study was found to be ∼4.54 × 10−7S cm−1. Specific surface area was found to be ∼8.16 m2 g−1. The electrode property has been studied via cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and charge-discharge analysis. The presence of a redox peak in cyclic voltammetry reveals typical pseudocapacitor behavior and recorded in the potential window −0.35 to 1 V. Faradic charge transfer resistance (Rct) was found to be ∼53.85 Ω (Rs = 2.03 Ω) from EIS, and the charge-discharge characteristic for a hundred cycles shows an initial capacity fading up to 25 cycles, beyond which it becomes stable at ∼6.2 Fg−1.

  相似文献   

17.
To perform digital image correlation (DIC), each image is divided into groups of pixels known as subsets or interrogation cells. Larger interrogation cells allow greater strain precision but reduce the spatial resolution of the data field. As such the spatial resolution and measurement precision of DIC are limited by the resolution of the image. In the paper the relationship between the size and density of speckles within a pattern is presented, identifying that the physical properties of a pattern have a large influence on the measurement precision which can be obtained. These physical properties are often overlooked by pattern assessment criteria which focus on the global image information content. To address this, a robust morphological methodology using edge detection is devised to evaluate the physical properties of different speckle patterns with image resolutions from 23 to 705 pixels/mm. Trends predicted from the pattern property analysis are assessed against simulated deformations identifying how small changes to the application method can result in large changes in measurement precision. An example of the methodology is included to demonstrate that the pattern properties derived from the analysis can be used to indicate pattern quality and hence minimise DIC measurement errors. Experiments are described that were conducted to validate the findings of morphological assessment and the error analysis.  相似文献   

18.
We have investigated the plastic deformation properties of single-phase Zr–Nb–Ti–Ta–Hf high-entropy alloys from room temperature (RT) up to 300 °C. Uniaxial deformation tests at a constant strain rate of 10?4?s?1 were performed, including incremental tests such as stress relaxations, strain-rate changes, and temperature changes in order to determine the thermodynamic activation parameters of the deformation process. The microstructure of deformed samples was characterized by transmission electron microscopy. The strength of the investigated Zr–Nb–Ti–Ta–Hf phase is not as high as the values frequently reported for high-entropy alloys in other systems. At RT we measure a flow stress of about 850 °C. We find an activation enthalpy of about 1 eV and a stress dependent activation volume between 0.5 and 2 nm3. The measurement of the activation parameters at higher temperatures is affected by structural changes evolving in the material during plastic deformation.  相似文献   

19.
Underwater acoustics is of fundamental importance for marine science and technology. However, acoustic waves transmitted by state‐of‐the‐art underwater acoustic systems are not inherently phase locked, which hinders the development of underwater acoustic technology. For example, the precision of underwater distance measurement can only achieve centimeter level. As a versatile tool, optical frequency combs have enabled revolutionary progress in optical metrology and precision measurement. In parallel with optical frequency combs, here, the generation of fully stabilized, underwater acoustic frequency combs is reported, in which equidistant acoustic modes are produced via a hydroacoustic transducer. The precision of each individual acoustic mode is measured to be 10?9 at 1 s and 10?12 at 1000 s averaging times. Underwater distance measurements are carried out in an anechoic pool using a dual‐comb scheme. Comparison with reference values shows consistency within 50 µm (7 × 10?6 in relative). The relatively long‐duration experiments at 7 m distance yield an Allan deviation of 1.8 µm (2.6 × 10?7 in relative) at 1 s and further 480 nm (6.8 × 10?8 in relative) at 40 s averaging times. The approach to acoustic frequency comb generation offers a promising and powerful platform for future underwater distance measurement, positioning, and navigation.  相似文献   

20.
This paper is the second of a series that reports results on the measurements of the absorption cross section of SO2 in the UV/visible region at high resolution and that investigates high temperatures in support to planetary applications. Absorption cross sections of SO2 have been obtained in the 29 000–44 000 cm−1 spectral range (227–345 nm) with a Fourier transform spectrometer at a resolution of 2 cm−1 (0.4500 cm MOPD and boxcar apodisation). Pure SO2 samples were used and measurements were performed at room temperature (298 K) as well as at 318, 338 and 358 K. Temperature effects in this spectral region are investigated and are favorably compared to existing studies in the literature. Comparison of the absorption cross section at room temperature shows good agreement in intensity with most of the literature data, but shows that most of the latter suffer from inaccurate wavelength scale definition. Moreover, literature data are often given only on restricted spectral intervals. Combined with the data described in the first part of this series of papers on SO2, this new data set offers the considerable advantage of covering the large spectral interval extending from 24 000 to 44 000 cm−1 (227–420 nm), at the four temperatures investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号