首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Article [1] is devoted to the investigation of the interface of viscous incompressible conducting media in the presence of a current and with a magnetic field with a small magnetic Reynolds number. Article [2] discusses the stability of a contact discontinuity in compressible media. In this article, in an analysis of the case of long-wave vibrations in the region z<0, the boundary condition is unsatisfactorily met. Therefore, in this part of it the author actually considered a problem with a mass force f=(0, 0, –g sign z) instead of f=(0, 0, –g). The present, article considers the stability of the interface of compressible conducting media in a magnetic field. It is postulated that the magnetic intensity can undergo a discontinuity at this boundary. The article gives the dependence of the maximal increment of the rise in the instability on the determining parameters. An analysis is made of the stability of a contact discontinuity as a function of the angles formed by the wave vector and the intensity of the magnetic field. The stabilizing effect of the walls on the stability is demonstrated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, 15–19, September–October, 1975.The author thanks A. G. Kulikovskii for his aid in stating the problem and for his continuing interest in the work.  相似文献   

2.
The convective instability of a layer of conducting liquid carrying a current and lying in a magnetic field perpendicular to the current is considered. The problem of the nonconductive approximation in a linear setting is solved. The relationships between the Rayleigh number and the Hartmann number (determining the neutral stability) are derived.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza. No. 2, pp. 20–26, March–April, 1971.  相似文献   

3.
The linear stability of a radiation-absorbing ionizing shock wave (light detonation waves) in the presence of a uniform electromagnetic field is investigated. The applied electric field is considered to be normal to the wave front and the magnetic field to be parallel to the front and perpendicular to the plane in which perturbations propagate. The medium satisfies a two-parameter equation of state. Analytic stability criteria are obtained. For a perfect gas the effect of the electromagnetic field and radiation on shock wave stability is determined.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 23–30, January–February, 1996.  相似文献   

4.
The stability of Hartmann flows for arbitrary magnetic Reynolds numbers is investigated in the framework of linear theory. The initial three-dimensional problem reduces to the equivalent two-dimensional problem. Perturbation theory is used to find asymptotic expressions for the eigenvalues. Distinguishing two types of disturbances — magnetic and hydrodynamic — is shown to be advantageous in a number of cases. Simple features of the stability are considered for particular cases. The well-know Lundquist result is generalized. An energy approach is applied to the problem of stability. The results of simulations involving the solution of the linear stability problem are described. A distinctive picture of stability is developed. There are several types of instability and they can develop simultaneously. The hydrodynamic and magnetic phenomena interact with each other in a very complex fashion. The magnetic field can either enhance flow stability or reduce it.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 6, pp. 17–31, November–December, 1972.  相似文献   

5.
An lonization instability of a plasma bounded by nonconducting walls is investigated taking into account electron thermal conduction. The wave vector is considered directed at some angle to the magnetic field direction. Perturbations with a wave vector orthogonal to the magnetic field induction vector turn out to be most unstable. A relatively simple formula to compute the neutral curve separating the stability and instability domains is obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 119–123, May–June, 1976.  相似文献   

6.
The problem on the stress–strain state of an infinite isotropic body made of a magnetically soft material and containing an elliptic crack is considered. It is assumed that the body is under an external magnetic field perpendicular to the crack plane. The basic characteristics of the stress–strain state and the magnetic field induced are determined and their singularities near the elliptic crack are studied. Formulas are given for the stress intensity factors for the force and magnetic fields near the crack tip  相似文献   

7.
The problem on the stress–strain state of an infinite isotropic body made of a magnetically soft material and containing a spherical cavity is considered. It is assumed that the body is under an external magnetic field. The basic characteristics of the stress–strain state and the magnetic field induced are determined and their singularities near the cavity are studied. Graphs are presented for the total magnitoelastic and Maxwell stresses as functions of the magnetic induction, the angle of dip, and the mechanical and magnetic properties of the material  相似文献   

8.
The motion of a suspension of solid magnetized ellipsoids of rotation in a uniform magnetic field is considered. The ellipsoids are assumed to be magnetized along the axes of symmetry. Relaxation processes in the solid phase are not considered. The stress tensor of the suspension is calculated taking into account the rotational Brownian motion of the particles. It is shown that the viscosity tensor contains six independent kinetic coefficients, which are even with respect to the magnetic field. The relation between these coefficients and the field and the ratio of the semiaxes of the ellipsoid is obtained. As an example, the effect of the magnetic field on the symmetrical flow of the suspension in a contractile cylinder is considered.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 75–82, September–October, 1973.  相似文献   

9.
The laminar flow of a thin layer of heavy viscous magnetic liquid down an inclined wall is examined. The stability and control of the flow of an ordinary liquid are affected only by alteration of the angle of inclination of the solid wall and the velocity of the adjacent gas flow. When magnetic liquids are used [1, 2], an effective method of flow control may be control of the magnetic field. By using magnetic fields of various configurations it is possible to control the flow of a thin film of viscous liquid, modify the stability of laminar film flow, and change the shape of the free surface of the laminarly flowing thin film, a factor which plays a role in mass transfer, whose rate depends on the phase contact surface area. The magnetic field significantly affects the shape of the free surface of a magnetic liquid [3, 4]. In this paper the velocity profile of a layer of viscous magnetic liquid adjoining a gas flow and flowing down an inclined solid wall in a uniform magnetic field is found. It is shown that the flow can be controlled by the magnetic field. The problem of stability of the flow is solved in a linear formulation in which perturbations of the magnetic field are taken into account. The stability condition is found. The flow stability is affected by the nonuniform nature of the field and also by its direction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 59–65, September–October, 1977.  相似文献   

10.
The paper considers the stability of the interface between viscous conducting media in the presence of a current and a magnetic field for a magnetic Reynolds number much smaller than unity. In order to obtain the dispersion relationships, a method is used that is based on the variational principle. It is shown that the method indicated yields good results when the magnetic field is considered. The dependence of the maximum growth rate of the instability on the defining parameters is presented. The problem of the stability of a fluid layer situated between solid walls for linearly distributed conductivity and density is likewise solved. The stabilizing effect of the Hartmann number on the stability is shown.Translated from Zhurnal Prikladnoi Mekhanikii Tekhnicheskoi Fiziki, No. 5, pp. 31–38, September–October, 1970.  相似文献   

11.
The influence of a permanent transverse magnetic field on the stability of a plane shock relative to small displacements of its front from the equilibrium position was examined in [1, 2]. Under the same simplifying assumptions, the stability of a shock in a longitudinal magnetic field (the induction vector is directed along the normal to the discontinuity) is investigated in this paper. The boundaries of the stability domain are determined. It is shown that the whole domain of neutral oscillations which exist in the gasdynamic case makes the transition into the stability domain in the presence of a longitudinal field. The boundaries of the stability domain are independent of the interaction parameter in contrast to the case of shock motion in a transverse field [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 195–198, March–April, 1976.  相似文献   

12.
Additional relationships must be used [1–3], in addition to those following from the main integral laws, in describing ionizing detonation waves, exactly as for ionizing shocks. These additional relationships are obtained from the requirement for the existence of wave structure. The structure of detonation waves ionizing a gas in an oblique magnetic field was investigated in [1, 2]. The case of a plane-polarized structure was considered, when the velocity vector and the magnetic field lie in a plane passing through the normal to the front. The structure of ionizing detonation waves is studied in this paper for the case when the wave is spatially polarized and both transverse magnetic field components vary in the structure. It is considered that the magnetic viscosity and a quantity reciprocal to the chemical reaction rate are much greater than the remaining dissipative coefficients in the layer representing the structure. Conditions for the existence of such a spatial structure are clarified. Plane-polarized ionizing detonation waves whose structure is not planar are also considered. When the characteristic length of magnetic field dissipation is much greater or much less than the characteristic length of the chemical reaction, the additional relationships assuring the existence of structure are written down explicitly or are investigated qualitatively.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 166–169, November–December, 1976.  相似文献   

13.
The subject considered is a homogeneous electrically conducting incompressible medium with a current in a homogeneous external magnetic field and bounded by parallel insulating planes normal to the induction vector. When the current is fed by means of a system of coaxial electrodes located on one or both of the insulating planes, regions arise in which the medium is in rotational motion. If the lateral wall is at a sufficient distance from the electrodes, the rotating layer which forms as a result of the interaction of the axial magnetic field and the radial component of the electric current has free lateral boundaries. A study is made of the way in which the Reynolds number for the loss of stability in such a layer depends on the Hartmann number and on the geometric parameter for high values of the Hartmann number and low values of the magnetic Reynolds number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 166–173, September–October, 1984.  相似文献   

14.
In the long-wavelength approximation and on the basis of a simplified system of equations analogous to the one considered by Shkadov and Nabil' [1, 2], an investigation is made into waves of finite amplitude in thin films of a viscous liquid on the walls of a channel in the presence of a turbulent gas stream. A bibliography on the linear stability of such plane-parallel flows can be found in [3–5]. The nonlinear stability is considered in [6]. A stationary periodic solution is sought in the form of a Fourier expansion whose coefficients are found near the upper curve of neutral stability by Newton's method and near the lower branch of the stability curve by the method of Petviashvili and Tsvelodub [7, 8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 2, pp. 37–42, March–April, 1981.I thank V. Ya. Shkadov for supervising the work and all the participants of G. I. Petrov's seminar for a helpful discussion.  相似文献   

15.
The flow of a conducting liquid in a channel of rectangular cross section with two walls (parallel to the external magnetic field) having an arbitrary conductivity, the other two being insulators, is considered. The solution of the problem is presented in the form of infinite series. The relationships obtained are used for numerical calculations of the velocity distribution and the distribution of the induced magnetic field over the cross section for several modes of flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkostt i Gaza, No. 5, pp. 46–52, September–October, 1970.  相似文献   

16.
The instability of a bubbling layer due to the presence of a vertical gradient in the ascent velocity of the bubbles, causing stratification of the layer with respect to density, is considered in [1]. A similar instability mechanism of a fluidized bed is studied in [2]. The stabilizing influence of electrical and magnetic fields on a bubbling layer is shown in [3]. Consideration is given in [4] to the influence of the conditions of supply of the gas on the stability of a bubbling layer with an immobile filling. The present work deals with the stability of the mechanical equilibrium of a horizontal layer of liquid with an immobile filling through which a gas soluble in the liquid is bubbled. It is shown that there exists a critical solubility of the gas at which the mechanical equilibrium is unstable with respect to monotonie perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 68–74, September–October, 1984.The author would like to thank V. P. Myasnikov and V. V. Dil ' man for their interest in this work, and M. H. Rozenberg for assistance with the programming.  相似文献   

17.
In two-dimensional supersonic gasdynamics, one of the classical steady-state problems, which include shock waves and other discontinuities, is the problem concerning the oblique reflection of a shock wave from a plane wall. It is well known [1–3] that two types of reflection are possible: regular and Mach. The problem concerning the regular reflection of a magnetohydrodynamic shock wave from an infinitely conducting plane wall is considered here within the scope of ideal magnetohydrodynamics [4]. It is supposed that the magnetic field, normal to the wall, is not equal to zero. The solution of the problem is constructed for incident waves of different types (fast and slow). It is found that, depending on the initial data, the solution can have a qualitatively different nature. In contrast from gasdynamics, the incident wave is reflected in the form of two waves, which can be centered rarefaction waves. A similar problem for the special case of the magnetic field parallel to the flow was considered earlier in [5, 6]. The normal component of the magnetic field at the wall was equated to zero, the solution was constructed only for the case of incidence of a fast shock wave, and the flow pattern is similar in form to that of gasdynamics. The solution of the problem concerning the reflection of a shock wave constructed in this paper is necessary for the interpretation of experiments in shock tubes [7–10].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 102–109, May–June, 1977.The author thanks A. A. Barmin, A. G. Kulikovskii, and G. A. Lyubimov for useful discussion of the results obtained.  相似文献   

18.
The two-dimensional problem of the shape of the free surface of a magnetic fluid in a gravity field, a uniform external magnetic field and the nonuniform field of a magnetized metal wedge is considered. The results of numerically calculating the shape of the free surface of a magnetic liquid drop retained on an inclined plane by the field of a magnetizing wedge are presented. The changes in the shape of the free surface of an infinite volume of magnetic liquid near the edge of a wedge with increase in the external field are investigated. It is shown that for a certain critical field some of the magnetic liquid separates and adheres to the edge of the wedge. Experimental data on the determination of the maximum cross-sectional area of a drop retained by the magnetic field of a wedge and the critical rise of the magnetic liquid relative to the level outside the field are presented. The experimental and theoretical results are in agreement.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 113–119, July–August, 1992.The authors wish to thank V. V. Gogosov for useful discussions and his interest in the work.  相似文献   

19.
The oscillations of thin conducting films placed in a magnetic field are considered. The effect of the field in different directions on the effective elasticity of the film is described and dispersion relations are obtained for longitudinal and transverse waves.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 174–180, May–June, 1976.  相似文献   

20.
We clarify the conditions under which instability arises in the equilibrium of a nonuniformly heated ferrofluid in a gravitational field and a nonuniform magnetic field. The latter is, in the first place, responsible for the Archimedean buoyant forces, and in the second, gradients in the magnetic intensity result in the appearance of internal heat sources (magnetocaloric effect). As a rule, this effect is extremely weak and to take correct account of it requires that at the same time the compressibility of the fluid be taken into account in the equation of heat conduction. We show that it is precisely the neglect of compressibility that explains the erroneous conclusion, contradictory to the laws of thermodynamics, concerning the convective instability of an isothermal ferrofluid that was arrived at in a series of papers by B. M. Berkovskii. We formulate a dimensionless criterion that characterizes the stability of the equilibrium of a ferrofluid. In limiting cases of large or small cavities this criterion passes over to the ferrohydrodynamic analog of the usual Schwartzschild or Rayleigh criteria.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 6, pp. 130–135, November–December, 1973.The author thanks members of seminars conducted by G. A. Lyubimov and G. I. Petrov for discussion of the questions considered here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号