首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat conductivity of three-dimensional Yukawa dusty plasma liquids (YDPLs) has been investigated by employing a homogenous nonequilibrium molecular dynamics (HNEMD) technique at a low normalized force field strength (F*). The obtained results for plasma heat conductivity with suitable normalizations are measured over a wide range of various plasma states of the Coulomb coupling (Γ) and screening length (κ) in a canonical ensemble (NVT). The calculations for lattice correlations (Ψ) show that our YDPLs system remains in a nonideal strongly coupled regime for a complete range of Γ. It has been shown that the presented Yukawa system obeys a simple analytical temperature demonstration of λ0 with a normalized Einstein frequency. The employed HNEMD algorithm is found to have a more efficient method than that of different earlier numerical methods and it gives more satisfactory results for lower to intermediate Γ with small system sizes at low F*. The obtained simulation results at nearly equilibrium F* (=?0.002) are in reasonable agreement with different earlier numerical results and with the present reference set of data showed deviations within less than ±15% for most of the present data points and generally underpredicted the λ0 by 2–22%, depending on (Γ, κ).  相似文献   

2.
The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied in a DC discharge device by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1<Γ?Γc) where Γ is the Coulomb coupling parameter and Γc is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.  相似文献   

3.
The Stokes-Einstein relation, relating the diffusion and viscosity coefficients D and eta, is tested in two dimensions. An equilibrium molecular-dynamics simulation was used with a Yukawa pair potential. Regimes are identified where motion is diffusive and D is meaningful. The Stokes-Einstein relation, Deta proportional k(B)T, was found to be violated near the disordering transition; under these conditions collective particle motion exhibits dynamical heterogeneity. At slightly higher temperatures, however, the Stokes-Einstein relation is valid. These results may be testable in strongly coupled dusty plasma experiments.  相似文献   

4.
We study the slowing down of a particle beam passing through the dusty plasma with power‐law κ‐distributions. Three plasma components, electrons, ions, and dust particles, can have a different κ‐parameter. By using Fokker‐Planck theory, the deceleration factor and slowing down time are derived and expressed by a hyper‐geometric κ‐function. Numerically, we study the slowing down property of an electron beam in the κ‐distributed dusty plasma. We show that the slowing down in the plasma depends strongly on the κ‐parameters of plasma components, and dust particles play a dominant role in the deceleration effects. We also show dependence of the slowing down on mass and charge of a dust particle in the kappa‐distributed plasma.  相似文献   

5.
The effect of hydrodynamical damping that arises due to the irreversible processes within the system have been studied on 1D nonlinear longitudinal dust lattice wave (LDLW) in homogeneous strongly coupled complex (dusty) plasma. Analytical investigation shows that the nonlinear wave is governed by Korteweg‐de Vries Burgers' equation. This hydrodynamical damping induced dissipative effect is responsible for the Burgers' term that causes the generation of shock wave in dusty plasma crystal. Numerical investigation on the basis of the glow‐discharge plasma parameters reveal that LDLW exhibits both oscillatory and monotonic shock. The shock is compressive in nature and its strength decreases (increases) with the increase of the shielding parameter κ (characteristic length L). The effects of dust‐neutral collision are also discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We have carried out million‐particle equilibrium molecular dynamics simulations of 3‐dimensional Yukawa liquids in order to determine the shear viscosity coefficient. The computations have been executed on Graphics Processing Unit (GPU) architectures with our largely parallelized code. The results cover the strongly coupled liquid phase, with Γ up to the vicinity of the freezing transition, for the 1 ≤ κ ≤ 3 domain of the screening parameter of the Yukawa potential. The good agreement of the present results with those obtained from earlier simulations of significantly smaller systems (consisting of several hundred to several thousand particles) verifies that the viscosity data derived in these smaller scale simulations are also acceptable (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Transverse collective modes of strongly coupled dusty plasmas are studied in the fluid phase. A memory function approach based on the generalized viscosity is employed to capture both the hydrodynamic limit and the second-moment sum rule. It is shown that shear modes do not exist at long wavelengths but do exist above a critical wave vector. Above the critical wave vector strong coupling gives rise to an incipient Brillouin structure in the dispersion. The emergence and damping of the shear mode is shown to depend on the generalized viscosity and a generalized relaxation time. Agreement with simulation data is shown to be excellent.  相似文献   

8.
双温度氦等离子体输运性质计算   总被引:1,自引:0,他引:1       下载免费PDF全文
王海兴  孙素蓉  陈士强 《物理学报》2012,61(19):195203-195203
获得覆盖较宽温度和压力范围内的等离子体输运性质是进行等离子体传热和流动过程数值模拟的必要条件.本文采用Saha方程计算等离子体组分, 采用基于将Chapman-Enskog方法扩展到高阶近似的方法, 计算获得了电子温度(Te)不等于重粒子温度(Th)的情形下, 在300 K到40000 K的温度范围内氦等离子体的黏性、热导率和电导率. 研究结果表明压力和热力学非平衡参数(θ =Te/Th)对氦等离子体的输运性质有较大的影响. 在局域热力学平衡条件下,计算获得的氦等离子体输运性质和文献报道的数据符合良好.  相似文献   

9.
We present the results of our experimental study of the flow of a dusty plasma liquid produced by macroparticles in an argon plasma. The dependences of shear viscosity for such a liquid on the magnitude of the external force inducing the dusty plasma liquid flow and on the plasma-generating gas pressure are analyzed. We have established that the viscosity of a dusty plasma medium decreases with increasing shear stress in it, while the viscosity of such a liquid increases with buffer gas pressure. The flow of a dusty plasma liquid under the action of an external force has been found to resemble the plastic deformation of a Bingham body. We suggest that the formation of crystal-like dusty plasma clusters in a “liquid” phase can be responsible for the non-Newtonian behavior of the dusty plasma liquid flow.  相似文献   

10.
The role of viscosity coefficient (η'), coulomb coupling parameter (Γ) and dust mass on the growth of jeans mode is investigated in strongly coupled dusty plasma using equations of Generalized Hydrodynamics (GH) Model. The novel aspect of this work is that the force arising due to electrostatic pressure caused by grain grain interaction has been included in the dynamics of dust particles. This force is found to play a significant role in counter balancing the self gravity effect, thereby reducing the growth rate of jeans instability. The present work may provide more physical insight in understanding the mechanisms behind formation of planetesimals, stars etc.  相似文献   

11.
S. Ghosh 《JETP Letters》2008,88(6):402-284
Taking into account “hydrodynamic damping” due to irreversible processes that occur within the system and the neutral drag due to the dust-neutral collision, a Burgers’ equation with a linear damping term is derived for a 1D nonlinear longitudinal dust lattice wave (LDLW) in homogeneous strongly coupled complex (dusty) plasma. The hydrodynamic damping generated-dissipative effect causes the generation of a shock wave in a dusty plasma crystal, whereas the neutral drag-induced dissipative effect causes the decay of the shock intensity with time. The width of the observed compressive shock increases (decreases) with an increase in shielding parameter κ (characteristic length L). Its implication in a glow-discharge plasma is briefly discussed. The text was submitted by the author in English.  相似文献   

12.
In present work the formation of dusty plasma structures in cryogenic glow dc discharge was investigated. The ordered structures from large number (~104) of charged diamagnetic dust particles in a cusp magnetic trap have been also studied in microgravity conditions. The super high charging (up to 5·107e) of dust macroparticles under direct stimulation by an electron beam is experimentally performed and investigated. The results of the investigation of Brownian motion for strongly coupled dust particles in plasma are presented. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present general expressions for the components of the dielectric tensor of magnetized dusty plasmas, valid for arbitrary direction of propagation and for situations in which populations of dust particles of different sizes are present in the plasma. These expressions are derived using a kinetic approach which takes into account the variation of the charge of the dust particles due to inelastic collisions with electrons and ions, and features the components of the dielectric tensor in terms of a finite and an infinite series, containing all effects of harmonics and Larmor radius, and is valid for the whole range of frequencies above the plasma frequency of the dust particles, which are assumed to be motionless. The integrals in velocity space which appear in the dielectric tensor are solved assuming that the electron and ion populations are described by anisotropic non-thermal distributions characterized by parameters κ and κ , featuring the Maxwellian as a limiting case. These integrals can be written in terms of generalized dispersion functions, which can be expressed in terms of hypergeometric functions. The formulation therefore becomes specially suitable for numerical analysis.  相似文献   

14.
The collective dynamics of an annulus dusty plasma formed between a co-centric conducting (non-conducting) disk and ring configuration is studied in a strongly magnetized radiofrequency (rf) discharge. A superconducting electromagnet is used to introduce a homogeneous magnetic field to the dusty plasma medium. In the absence of the magnetic field, the dust grains exhibit thermal motion around their equilibrium position. The dust grains start to rotate in the anticlockwise direction with increasing magnetic field (B > 0.02 T ), and the constant value of the angular frequency at various strengths of the magnetic field confirms the rigid body rotation. The angular frequency of dust grains linearly increases up to a threshold magnetic field (B > 0.6 T ) and after that its value remains nearly constant in a certain range of magnetic field. Further increase in magnetic field (B > 1 T ) lowers the angular frequency. Low value of the angular frequency is expected by reducing the width of the annulus dusty plasma or the input rf power. The azimuthal ion drag force due to the magnetic field is assumed to be the energy source which drives the rotational motion. The resultant radial electric field in the presence of a magnetic field determines the direction of rotation. The variation of floating (plasma) potential across the annular region at given magnetic field explains the rotational properties of the annulus dusty plasma in the presence of a magnetic field.  相似文献   

15.
A two-dimensional Yukawa liquid is studied using two different nonequilibrium molecular dynamics simulation methods. Shear viscosity values in the limit of small shear rates are reported for a wide range of Coulomb coupling parameter and screening lengths. At high shear rates it is demonstrated that this liquid exhibits shear thinning; i.e., the viscosity eta diminishes with increasing shear rate. It is expected that two-dimensional dusty plasmas will exhibit this effect.  相似文献   

16.
We report experimental observations of transverse shear waves in a three-dimensional dusty plasma that is in the strongly coupled fluid regime. These spontaneous oscillations occur when the ambient neutral pressure is reduced below a threshold value and the measured dispersion characteristics of these waves are found to be in good agreement with predictions of a viscoelastic theory of dusty plasmas.  相似文献   

17.
We present here an order of magnitude calculation for the coefficients of viscosity with the assumption that the drift velocity introduces asymmetry both in the single-particle distribution functionf 1 and the correlation functionP(1, 2). These asymmetric parts have been estimated considering the self-relaxation of the system when the cause of drift velocity is suddenly removed. Using these, the kinetic part of the coefficient of electron viscosity has been calculated and the result fairly agrees with similar studies by others. The potential part of shear viscosity coefficient is found to be zero while both parts of the coefficient of bulk viscosity are non-zero.  相似文献   

18.
The structural, electronic and optical properties of GaP, GaAs and GaSb at ambient and under hydrostatic pressure have been calculated using the full potential linear augmented plane wave (FP-LAPW) method. The calculated lattice constant, bulk modulus and its pressure derivative are compared with available experimental data. The first and second order pressure coefficients for the (Γ-Γ) energy gaps and hydrostatic deformation potential shows agreement with measurement. The linear pressure coefficients of the transition (Γ-Γ) increases significantly as anion atomic number increases (GaPGaAsGaSb). The magnitude of linear pressure coefficient of the transition (Γ-X) are small and usually negative. The variation of linear pressure coefficient of the transition (Γ-L) are relatively small and follow similar trend as (Γ-Γ). Overall the calculated linear and nonlinear pressure coefficients show good agreement with the experimental data. The obtained dielectric function, refractive index, extinction coefficient and reflectivity are compared with measured data and show qualitatively good agreement.  相似文献   

19.
The shear viscosity of a two-dimensional (2D) liquid was calculated using molecular dynamics simulations with a Yukawa potential. The viscosity has a minimum at a Coulomb coupling parameter Gamma of about 17, arising from the temperature dependence of the kinetic and potential contributions. Previous calculations of 2D viscosity were less extensive as well as for a different potential. The stress autocorrelation function was found to decay rapidly, contrary to earlier work. These results are useful for 2D condensed matter systems and are compared to a dusty plasma experiment.  相似文献   

20.
A two-dimensional mesoscopic cluster of “dusty plasma” particles, which can be interpreted as a system of microparticles in an rf gas discharge, is investigated. The ground-state configurations and corresponding eigenfrequencies and eigenvectors are found for clusters of N=22–40 particles in a harmonic confining potential. It is shown that a change in the Debye screening length R of the particle charge in the plasma can cause structural transformations of the ground state of the system, manifested as first-order or second-order phase transitions with respect to the parameter R. The disorder (“melting”) of the clusters is analyzed in detail by Monte Carlo simulation and molecular dynamics. By varying the characteristic range of particle interaction in a cluster, it is possible to modulate its thermodynamic properties and the character of the phase transitions, thereby causing a controlled transition of the system into the fully ordered, orientationally disordered, or fully disordered state. The possibility of dusty plasma clusters coexisting in different states is discussed. Zh. éksp. Teor. Fiz. 116, 1300–1312 (October 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号