首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-Schiff base (Te, N, O) ligand MeOC6 H4TeCH2CH2NHCH(CH3)C6H4–2–OH (LH) having a chiral center and its palladium(II) complex [PdClL]·CH2Cl2 (1) have been synthesized. Both have characteristic 1H and 13C NMR spectra. The single crystal structure of the complex 1 has been determined by X-ray diffraction methods. The monoclinic crystals of 1 (space group P21/n) have a=14.581(5) Å, b=13.160(5) Å and c=20.249(5) Å, β=99.398(5)°. The Te $\cdots A non-Schiff base (Te, N, O) ligand MeOC6 H4TeCH2CH2NHCH(CH3)C6H4–2–OH (LH) having a chiral center and its palladium(II) complex [PdClL]·CH2Cl2 (1) have been synthesized. Both have characteristic 1H and 13C NMR spectra. The single crystal structure of the complex 1 has been determined by X-ray diffraction methods. The monoclinic crystals of 1 (space group P21/n) have a=14.581(5) ?, b=13.160(5) ? and c=20.249(5) ?, β=99.398(5)°. The TeCl secondary interactions [3.303(2)–3.352(2) ?] between two nearly square planar palladium complex molecules results in a bimolecular aggregate having a PdPd distance 3.203(1) ?. The Pd–Te, Pd–N and Pd–O bond lengths are 2.5005(7)/2.4914(7), 2.060(4)/2.061(4) and 2.054(3)/2.044(3) ?, respectively.  相似文献   

2.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

3.
Condensation of 1H-indole-2,3-dione (isatin) with (R)-(Ar)-ethylamines gives enantiopure Schiff bases, 3-{(R)-(Ar)-ethylimino}-1,3-dihydro-indol-2-one (HL) {Ar?=?Ph (HL1), 2-MeOC6H4 (HL2), 4-MeOC6H4 (HL3), 4-BrC6H4 (HL4), and 1-naphthyl (HL5)}. The Schiff bases readily coordinate to [Rh(μ-O2CMe)(η4-cod)]2 (cod?=?1,5-cyclooctadiene) to give mononuclear [Rh(η4-cod){3-((R)-(Ar)-ethylimino)-3H-indol-2-olato}] {Ar?=?Ph (1), 4-MeOC6H4 (2), and 4-BrC6H4 (3)}, respectively. The Schiff bases and complexes have been fully characterized by IR, UV-Vis, 1H-NMR, mass, and circular dichroism (CD) spectrometry. Polarimetry and CD measurements show the enantiopurity of the Schiff bases as well as the complexes. 1H NMR measurements reveal slow conversion of the lactam to the enol form of the Schiff bases in solution. In the solid state the lactam form dominates as shown by crystal structures of HL1 and HL4. While gross structural features of both are similar, the molecules differ significantly in the relative orientations of the aryl and lactam rings. The difference is mostly rotation about the N2–C9 bond with different C8–N2–C9–C11 torsion angle of +89.77(12)° for HL1 and C2–N2–C9–C11 of +106.8(3)° for HL4.  相似文献   

4.
    
A variety of tellurium ligands has been designed and studied for their complexation reactions in the last decade. Of these hybrid telluroethers, halotellurium ligands and polytellurides are the most notable ones. RTe-andpolytelluride ions have also been used to design clusters. Ligation of ditelluroethers and several hybrid telluroethers is extensively studied in our laboratories. The ditelluroether ligand RTeCH2TeR (where R = 4-MeOC6H4) (1), similar to dppm [1,2-bis(diphenylphosphino)methane], has been synthesized in good yield (∼80%) by reacting CHCl3 with RTe- (generatedin situ by borohydride reduction of R2Te2). Iodine reacts with1 to give tetra-iodo derivative, which has intermolecular Te.I interactions resulting in a macro structure containing rectangular Te-I.Te bridges.1 readily forms four membered rings with Pd(II) and Ru(II). On the formation of this chelate ring, the signal in125Te NMR spectra shifts significantly upfield (50-60 ppm). The bridging mode of1 has been shown in [Ru(p-cymene)Cl2]](μ-l)[Ru(p-cymene)Cl2]. The hybrid telluroether ligands explored are of the types (Tex, Sy ), (Tex, Ny) and ( Tex,Oy ). The tellurium donor site has strongtrans influence, which is manifested more strongly in square planar complexes of palladium(II). The morpholine N-donor site has been found to have weaker donor characteristics in (Tex, Ny) ligands than pyridine and alkylamine donor sites of analogous ligands. The singlet oxygen readily oxidises the coordinated Te. This oxidation follows first order kinetics. The complexation reaction of RuCl3].xH2O with N-[2-(4-methoxyphenyltelluro)ethyl]phthalimide (2) results in a novel (Te, N, O)-heterocycle, Te-chloro,Te-anisyl-1a-aza-4-oxa-3-tellura-1H, 2H, 4aH-9 fluorenone. The (Te, O) ligands can be used as hemilabile ligands, the oxygen atom temporarily protects the vacant coordination site before the arrival of the substrate. The chelate shifts observed in125Te NMR spectra of metal complexes of Te-ligands have a close parallel to those of31P NMR. For the formation of five-membered rings, the value is positive and of the order of 130 ppm whereas for six-membered rings it is negative and ∼30 ppm only.  相似文献   

5.
Abstract

Sodium aryltellurolate (ArTe?Na+, where Ar = 4-MeOC6H4 or 4-EtOC6H4) reacts with 2- bromoethylamine resulting in the (Te, N) ligands 2-aryltelluroethylamine (ArTeCH2CH2NH2, 1) which have been characterized by elemental analyses, molecular weight, IR, 1H and 13C NMR spectra. With HgCI2, they form HgC12·1 type of complexes. IR, 1H and 13C NMR spectra of the complexes suggest that 1 ligates as a bidentate ligand with respect to Hg(II). Osmometric molecular weight measurements suggest that on heating the mercury complex HgCl2·lb (Ar = 4-EtOC6H4) in solution, relatively less soluble species result. It seems to have two Hg atoms bridged by two (Te, N) ligands. The HgC2·la (Ar = 4-MeOC6H4) has very low solubility in organic solvents and. therefore, seems to be dimerized or polymerized during the synthesis. Analysis of CH2 rocking bands in IR spectra suggests that two CH2 groups of the ligands are most probably in a gauche conformation in the mercury complexes.  相似文献   

6.
Three new dialkytin complexes, {[o-OH–C6H4(O)C=N–N=C(CH2Ph)COO](n-Bu2Sn)}n (1), {[o-OH–C6H4(O)C=N–N=C(CH2Ph)COO](MeOH)(p-MeC6H5CH2)2Sn}2 (2), and {[o-OH–C6H4(O)C=N–N=C(CH2Ph)COO](EtOH)(C6H5CH2)2Sn}2 (3), were synthesized by reactions of 2-oxo-3-phenylpropionic acid salicyloylhydrazone with the corresponding diorganotin(IV) complex, respectively. All the complexes were characterized by IR, 1H, 13C, 119Sn NMR spectra, elemental analysis, X-ray single crystal diffraction and TGA. For in vitro antitumor activities, complexes were evaluated by the MTT assay against three human cancer cell lines (NCI-H460, HepG2 and MCF7) and human cell line (HL7702). The results showed that 1 may be a better potential candidate for further chemical optimization and cancer therapy than 2 and 3. The interactions between the complexes and calf thymus DNA were studied; the interaction of 1 with calf thymus DNA was intercalation, 2 and 3 were intercalation and electrostatic binding.  相似文献   

7.
The reaction of Schiff base 1,7-bis-(pyridin-2-yl)-2,6-diaza-1,6-heptadiene (L) with either NiCl2·6H2O or [PdIICl2(CH3CN)2]/Na[BF4] in 1?:?1 stoichiometry yielded mononuclear ionic complexes, trans-[NiII(L)(H2O)2]Cl2·3H2O (1·3H2O) and [PdII(L)][BF4]2 (2), respectively; the reaction of L with [PdIICl2(CH3CN)2] in 1?:?2 ratio yielded dinuclear cis-[PdII 2(μ-L)Cl4] (3). Complexes 1–3 were characterized by vibrational spectroscopy and X-ray diffraction; diamagnetic 2 and 3 were also characterized by NMR in solution. The molecular structures of 1 and 2 displayed tetradentate coordination of L with formation of two five-membered and one six-membered chelate rings for both complexes. In 3, L showed bidentate coordination mode for each pyridylimine toward PdII. Complex 1 has distorted octahedral geometry around NiII and an extended hydrogen-bond network; distorted square planar geometry around PdII in 2 and 3 was observed.  相似文献   

8.
New tetranuclear compounds have been obtained by reacting binuclear complexes, [Zn2L n (μ-OH)(H2O)2](ClO4)2, with sodium dicyanamide (HL n are end-off bicompartmental ligands resulting from condensation between 2,6-diformyl-p-cresol with N,N-dimethyl-ethylenediamine or 2-aminomethyl-pyridine). The complexes, [{L1(μ-OH)Zn2}(μ 1,5-dca)2{Zn2(μ-OH)L1}](ClO4)2 (1) and [{Zn2L2(μ 3-OH)(dca)}2](ClO4)2?·?2H2O (2), have been characterized by single-crystal X-ray diffraction. The angular nature of the bridging dicyanamido induces the “M” shape of the tetranuclear cationic unit in 1. The tetranuclear cation, because of its particular shape, acts as a receptor toward one perchlorate ion, which is hydrogen bonded to the hydroxo groups. This tetranuclear unit in 2 has a defective heterocubane structure. The luminescence properties of the new tetranuclear complexes have been investigated.  相似文献   

9.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

10.
The hexadentate ligand all‐cis‐N1,N2‐bis(2,4,6‐trihydroxy‐3,5‐diaminocyclohexyl)ethane‐1,2‐diamine (Le) was synthesized in five steps with an overall yield of 39 % by using [Ni(taci)2]SO4?4 H2O as starting material (taci=1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol). Crystal structures of [Na0.5(H6Le)](BiCl6)2Cl0.5?4 H2O ( 1 ), [Ni(Le)]‐ Cl2?5 H2O ( 2 ), [Cu(Le)](ClO4)2?H2O ( 3 ), [Zn(Le)]CO3?7 H2O ( 4 ), [Co(Le)](ClO4)3 ( 5 c ), and [Ga(H?2Le)]‐ NO3?2 H2O ( 6 ) are reported. The Na complex 1 exhibited a chain structure with the Na+ cations bonded to three hydroxy groups of one taci subunit of the fully protonated H6(Le)6+ ligand. In 2 , 3 , 4 , and 5 c , a mononuclear hexaamine coordination was found. In the Ga complex 6 , a mononuclear hexadentate coordination was also observed, but the metal binding occurred through four amino groups and two alkoxo groups of the doubly deprotonated H?2(Le)2?. The steric strain within the molecular framework of various M(Le) isomers was analyzed by means of molecular mechanics calculations. The formation of complexes of Le with MnII, CuII, ZnII, and CdII was investigated in aqueous solution by using potentiometric and spectrophotometric titration experiments. Extended equilibrium systems comprising a large number of species were observed, such as [M(Le)]2+, protonated complexes [MHz(Le)]2+z and oligonuclear aggregates. The pKa values of H6(Le)6+ (25 °C, μ=0.10 m ) were found to be 2.99, 5.63, 6.72, 7.38, 8.37, and 9.07, and the determined formation constants (log β) of [M(Le)]2+ were 6.13(3) (MnII), 20.11(2) (CuII), 13.60(2) (ZnII), and 10.43(2) (CdII). The redox potentials (vs. NHE) of the [M(Le)]3+/2+ couples were elucidated for Co (?0.38 V) and Ni (+0.90 V) by cyclic voltammetry.  相似文献   

11.
Inexpensive air and moisture stable diamino-diol ligands [(2-OH-C10H6)CH2(μ-NC4H8N)CH2(C10H6-2-OH)] (1) and [(5-tBuC6H3-2-OH)CH2(μ-NC4H8N)CH2(5-tBuC6H3-2-OH)] (2) were synthesized by reacting corresponding alcohols with formaldehyde and piperazine. Treatment of ligands 1 and 2 with Pd(OAc)2 in 1:1 molar ratio afforded neutral palladium complexes [Pd{(OC10H6)CH2(μ-NC4H8N)CH2(C10H6O)}] (3) and [Pd{(5-tBuC6H3-2-O)CH2(μ-NC4H8N)CH2(5-tBuC6H3-2-O)}] (4) in good yield. The palladium complexes 3 and 4 are employed in Suzuki-Miyaura cross-coupling reactions between phenylboronic acid and several aryl chlorides or bromides. They are found to be competent homogeneous catalysts for a variety of substrates to afford the coupled products in good to excellent yields. The crystal structures of compounds 2 and 4 are also reported.  相似文献   

12.
13.
Dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene?=?C6H6; p iPrC6H4Me; C6Me6) and monomeric cyclopentadienyl complexes [(η5-Cp)Ru(PPh3)2Cl] (Cp?=?cyclopentadienyl) react with polypyridyl nitrogen ligands L1 (3-(pyridin-2-yl)-1H-1,2,4-triazole) and L2 (1,3-bis(di-2-pyridylaminomethyl)benzene) in methanol to afford cationic mononuclear compounds [(η6-arene)Ru(L1)Cl]+ (arene?=?C6H6, 1; p iPrC6H4Me, 2; C6Me6, 3), [(η6arene)Ru(L2)Cl]+ (arene?=?C6H6, 4; p iPrC6H4Me, 5; C6Me6, 6), [(η5-Cp)Ru(L1)(PPh3)]+ (7), and [(η5Cp)Ru(L2)(PPh3)]+ (8). All cationic mononuclear compounds were isolated as their hexafluorophosphate salts and characterized by elemental analyses, NMR, and IR spectroscopic methods and some representative complexes by UV-Vis spectroscopy. The solid state structures of two derivatives, [6]PF6 and [7]PF6, have been determined by the X-ray structure analysis.  相似文献   

14.
Six diorganotin esters of Schiff-base ligands formulated as [R2SnLY]2, where L1 is C6H5CON2C(CH3)CO2 with Y?=?CH3CH2OH, R?=?mClC6H4CH2 (1), oFC6H4CH2 (2), pFC6H4CH2 (3) and L2 is 2-HOC6H4CON2C(CH3)CO2 with Y?=?CH3OH, R?=?oFC6H4CH2 (4), pFC6H4CH2 (5), mClC6H4CH2 (6) have been prepared and characterized by elemental analysis, IR, 1H and 119Sn NMR spectra. The crystal structures of complexes 1 and 4 have been determined by X-ray single crystal diffraction. The structure analyses reveal that the Sn atom in both 1 and 4 is seven-coordinate in distorted pentagonal bipyramid geometries with a planar SnO4N unit and two apical aryl carbon atoms, thus forming a dimeric molecule, which sits on a crystallographic center of symmetry. Intramolecular or intradimeric hydrogen bonds contribute to the stability and compactness of the crystal structures.  相似文献   

15.
We have reported herein the synthesis of three new Cu(II) complexes of tri- and tetradentate Schiff base ligands containing N3 or N4 donor set along with terminal NNN or SCN ligands: [L1Cu(NCS)]ClO4 (1), [L2Cu(NCS)2] (2) and [L3Cu(NNN)]ClO4 (3) [L1 = NC5H4C(CH3)=N(CH2)3N=C(CH3)C5H4N, L2= Me2N–(CH2)3–N=C(CH3)C5H4N and L3 = NC5H4CH=N–(CH2)4–N=CHC5H4N]. The complexes have been systematically characterised by elemental, spectroscopic and electrochemical techniques. Antimicrobial activities of the Schiff base ligands and their metal complexes have been studied using the disc diffusion method on the strains of Candida tropicalis and Bacillus megaterium. Structures of all the complexes have been unequivocally established from single crystal X-ray diffraction analyses that show the monomeric units containing a five-coordinated copper center in highly distorted square pyramidal geometry with thiocyanate or azide anion coordinated as terminal ligand. The complexes 1 and 3 crystallise in monoclinic (P21/c) and 2 in triclinic (P-1) space group, respectively.  相似文献   

16.
Four diiron dithiolate complexes with monophosphine ligands have been prepared and structurally characterized. Reactions of (μ-SCH2CH2S-μ)Fe2(CO)6 or [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 with tris(4-chlorophenyl)phosphine or diphenyl-2-pyridylphosphine in the presence of Me3NO·2H2O afforded diiron pentacarbonyl complexes with monophosphine ligands (μ-SCH2CH2S-μ)Fe2(CO)5[P(4-C6H4Cl)3] (1), (μ-SCH2CH2S-μ)Fe2(CO)5[Ph2P(2-C5H4N)] (2), [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), and [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[Ph2P(2-C5H4N)] (4) in good yields. Complexes 14 were characterized by elemental analysis, 1H NMR, 31P{1H} NMR and 13C{1H} NMR spectroscopy. Furthermore, the molecular structures of 14 were confirmed by X-ray crystallography.  相似文献   

17.
A mononuclear complex [CuL] (1), a binuclear complex [Cu2LCl2(H2O)] (2), a trinuclear complex [Cu3L2](ClO4)2 (3) involving o-phenylenediamine and salicylaldehyde and another binuclear complex of a tridentate ligand (H2L1) [Cu2L21](CH3COO)2 (4) involving o-phenylenediamine and diacetylmonoxime have been synthesized, where H2L = N,N′-o-phenylenebis(salicylideneimine) and H2L1 = 3-(2-aminophenylimino)butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral and magnetic studies. The binuclear complex (2) was characterized structurally where the two Cu(II) centers are connected via an oxygen-bridged arrangement.  相似文献   

18.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

19.
Treatment of β-diketiminate ligands bearing different N-aryl monoatomic substituents [HLH = (C6H5)N = C(Me)CH=C(Me)NH(C6H5), HLF = (2,6-F2C6H3)N=C(Me)CH=C(Me)NH(2,6-F2C6H3), and HLCl = (2,6-Cl2C6H3)N=C(Me)CH=C(Me)NH(2,6-Cl2C6H3)] with Ln(CH2SiMe3)3(THF)2 (Ln = Y and Lu) afforded a variety of β-diketiminato rare-earth metal complexes depending on substituents, namely, phenyl ring C–H bond activated complexes (L')(LH)Lu(THF) ( 1b , L' = (C6H4)N = C(Me)CH=C(Me)N(C6H5)), six-coordinate homoleptic complexes (LH)3Ln [Ln = Y ( 1aa ), Lu ( 1bb )], five-coordinate monoalkyl complexes (LF)2Ln(CH2SiMe3) [Ln = Y ( 2a ), Lu ( 2b )], and four-coordinate dialkyl complexes (LCl)Ln(CH2SiMe3)2 [Ln = Y ( 3a ), Lu ( 3b )]. All these complexes were characterized with NMR spectroscopy, and lutetium complexes 1b , 1bb and 3b were structurally validated by single-crystal X-ray diffraction analysis. Moreover, dialkyl complexes 3 promoted the polymerization of 2-vinylpyridine (2-VP) to produce atactic poly(2-vinylpyridine) (P2VP) with quantitative yield. On activation with an equimolar amount of [Ph3C][B(C6F5)4], complexes 3 afforded highly isotactic P2VP with an mm value up to 94 %. Both 1H NMR spectrum and MALDI-TOF mass analysis of an oligomer indicate that the polymerization was initiated by coordination insertion of 2-VP into the Y-CH2SiMe3 bond.  相似文献   

20.
Eight dinuclear rhodium(II) complexes containing various, (primarily, polyfunctional) N-donor ligands in the trans position with respect to the Rh-Rh bond were synthesized and characterized by X-ray diffraction. In the Chinese-lantern dinuclear rhodium(II) pivalates, RhII 2 (μ-OOCCMe3)4(L)2 (L is 2,3-diaminopyridine (2), 7,8-benzoquinoline (4), 2,2′:6′,2″-terpyridine (5), N-phenyl-o-phenylenediamine (7)), and RhII 2 (μ-OOCCMe3)4L1L2 (3, L1 is 2-phenylpyridine, L2 = MeCN), the steric effects of the axial ligands are most strongly reflected in the Rh-N(L) and Rh-Rh bond lengths. The introduction of chelating ligands containing a conformationally rigid chelate ring leads to the cleavage of two carboxylate bridges to form the dinuclear double-bridged structure RhII 2 (μ- OOCCMe3)2(OCCMe3)22-L3)2, where L3 is 8-amino-2,4-dimethylquinoline (6). The reaction of complex 7 containing coordinated N-phenyl-o-phenylenediamine with pyrrole-2,5-dialdehyde afforded the new RhII 2(μ-OOCCMe3)4(L4)2 complex (8) containing 5-(1-phenyl-1-H-benzimidazol-2-yl)-1H-pyrrole-2-carbaldehyde (L4) in the axial positions of the dirhodium tetracarboxylate fragment. The coordinated diamine differs in reactivity from the free diamine. The reaction of the former with the above dialdehyde affords the [1+1]-condensation product, viz., 5-{(E)-[(2-anilinophenyl)imino]methyl}-1-H-pyrrole-2-carbaldehyde, whereas the reaction of unsubstituted o-phenylenediamine gives 5-{(E)-[(2-aminophenyl)imino]methyl}-1-H-pyrrole-2-carbaldehyde (L5) . The reaction of the latter with RhII 2(μ-OOCCMe3)4(H2O)2 affords the dinuclear complex RhII 2(μ-OOCCMe3)2(OOCCMe3)22-L5)2 (9), which is an analog of complex 6 containing only two bridging carboxylate groups.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 581–591, March, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号