首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin SiO2 layers were implanted with 140 keV Si ions to a dose of 1017 cm−2. The samples were irradiated with 130 Mev Xe ions in the dose range of 3×1012–1014 cm−2, either directly after implantation or after pre-annealing to form the embedded Si nanocrystals. In the as-implanted layers HREM revealed after Xe irradiations the 3–4 nm-size dark spots, whose number and size grew with increase in Xe dose. A photoluminescence band at 660–680 nm was observed in the layers with the intensity dependent on the Xe dose. It was found that passivation with hydrogen quenched that band and promoted emission at ∼780 nm, typical of Si nanocrystals. In spectra of pre-annealed layers strong ∼780 nm peak was observed initially. Under Xe bombardment its intensity fell, with subsequent appearance and growth of 660–680 nm band. The obtained results are interpreted as the emission at ∼660–680 nm belonging to the imperfect Si nanocrystals. It is concluded that electronic losses of Xe ions are mainly responsible for formation of new Si nanostructures in ion tracks, whereas elastic losses mainly introduce radiation defects, which quench the luminescence. Changes in the spectra with growth of Xe ion dose are accounted for by the difference in the diameters of Xe ion tracks and their displacement cascades.  相似文献   

2.
The total dose effects of 1?MeV electrons on the dc electrical characteristics of silicon NPN transistors are investigated in the dose range from 100?krad to 100?Mrad. The different electrical characteristics such as Gummel characteristics, excess base current (ΔIB), dc current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics were studied in situ as a function of total dose. A considerable increase in base current (IB) and a decrease in hFE, gm and ICSat was observed after 1?MeV electron irradiation. The collector–base (C–B) junction capacitance of transistors was measured to estimate the change in the effective carrier concentration. After 1?MeV electron irradiation, a considerable degradation in capacitance was observed. The plot of (1/C2) versus voltage shows that the effective carrier concentration and built-in voltage (Vbi) increase marginally upon 1?MeV electron irradiation. The results of 1?MeV electron irradiation were compared with 1?MeV proton and Co-60 gamma irradiation results in the same dose range. The degradation for 1?MeV electron and Co-60 gamma-irradiated transistors was significantly less when compared to 1?MeV proton-irradiated transistor. The 1?MeV proton, 1?MeV electron and Co-60 gamma-irradiated transistors were subjected to isochronal annealing to analyze the recovery of the electrical parameters.  相似文献   

3.
Using combined excitation emission spectroscopy, we performed a comparative study of europium ions in GaN in samples that have been in situ doped during interrupted growth epitaxy (IGE) or conventional molecular beam epitaxy (MBE) as well as samples that were grown using organometallic vapor phase epitaxy (OMVPE) and subsequently ion implanted with Eu ions. Through site-selective resonant excitation, we are able to unambiguously assign all major observed transitions to a combination of different incorporation sites and electron–phonon coupled transitions. We identified at least nine different incorporation sites of Eu ions in GaN and studied how these sites behave under different excitation conditions and how their relative number is modified by different growth and doping conditions. The coupling to phonons has also been studied for a series of Al x Ga1−x N samples with x=0…1. We find that a main site most resembling an unperturbed Eu ion on Ga site is always dominant, while the minority sites are changing substantially in relative numbers and can occur in some samples fairly close in emission intensity to the main site. In terms of the excitation pathway after the creation of electron-hole pairs, we found three types of centers: (1) sites that are dominantly excited through shallow defect traps; (2) sites that are excited through a deep defect trap; (3) sites that cannot be excited at all including the majority of the main sites. We interpret this finding to indicate that the ion in this environment is not very efficient in trapping excitation and that the indirect excitation involving other traps depends on the ion/trap distance. Many of the main sites are far away from these traps and cannot be excited through this channel at all. The efficiency of excitation is highest for the deep traps, indicating that it would be desirable to enrich the respective site, as has been done with some success in the IGE grown samples.  相似文献   

4.
Polyimide (PI) and Fluorinated Ethylene Propylene (FEP) samples (15 mm×15 mm×50 μm ) were exposed to atomic oxygen ions of average energy ~12 eV and flux ~5×1013 ions cm ?2 s ?1, produced in the Electron Cyclotron Resonance (ECR) plasma. The energy and the flux of the oxygen ions at different positions in the plasma were measured by a retarding field analyzer. The fluence of the oxygen ions was varied from sample to sample in the range of ~5×1016 to 2×1017 ions cm ?2 by changing the irradiation period. The pre- and the post-irradiated samples were characterized by the weight loss, Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared (FTIR) techniques. The weight of the PI and FEP samples decreased with increasing the ion fluence. However, the erosion yield for the PI is found to be higher, by almost a factor five, when compared with that of FEP. On the surface region of irradiated samples, the concentrations of the carbon, fluorine, and oxygen and their corresponding chemical bonds have changed appreciably. Moreover, blisters and nanoglobules were also observed even at a fluence of ~1017 ions cm ?2. This oxygen ion fluence is almost two orders of magnitude lower than that of the 5 eV atomic oxygen, which a satellite encounters in the space, at the low Earth orbit, during its mission period of about 7 years.  相似文献   

5.
Glasses in the system 0.1CuO-(x-0.1)PbO-(1-x)B2O3 (0.3≤ x ≤ 0.7) were synthesized by using the melt quench technique. A number of studies such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), fourier-transform infrared (FTIR) and Raman spectroscopy, electron paramagnetic resonance (EPR) and dielectric properties (viz., dielectric constant ??, dielectric loss and ac conductivity σac) are employed to characterize the glasses. The amorphous nature of the glasses was confirmed using XRD while the glass transition temperature (Tg) of glass samples have been estimated from DSC investigation and found that the Tg decreases with increasing PbO content. Raman and FTIR spectroscopy reveals that when increasing lead ions, the tetrahedral [BO4] units are gradually replaced by trigonal [BO3] units. The EPR study leads to determine the local site of Cu2+ ions and its transformation with the Pb content in the studied glasses.  相似文献   

6.
A projectile ion-recoil ion coincidence technique has been employed to study the multiple ionization and the charge transfer processes in collisions of 60–120 MeV Si q+ (q = 4−14) ions with neutral argon atoms. The relative contribution of different ionization channels, namely; direct ionization, electron capture and electron loss leading to the production of slow moving multiply charged argon recoil ions have been investigated. The data reported on the present collision system result from a direct measurement in the considered impact energy for the first time. The total ionization cross-sections for the recoil ions are shown to scale as q 1.7/E p 0.5 , where E p is the energy in MeV of the projectile and q its charge state. The recoil fractions for the cases of total- and direct ionizations are found to decrease with increasing recoil charge state j. The total ionization fractions of the recoils are seen to depend on q and to show the presence of a ‘shell-effect’ of the target. Further, the fractions are found to vary as 1/j 2 upto j = 8+. The average recoil charge state 〈j〉 increases slowly with q and with the number of lost or captured electrons from or into the projectile respectively. The projectile charge changing cross-sections σ qq are found to decrease with increasing q for loss ionization and to increase with q for direct-and capture ionization processes respectively. The physics behind various scaling rules that are found to follow our data for different ionization processes is reviewed and discussed.  相似文献   

7.
Pd/n-GaAs realized devices (junction made on a virgin substrate prior to irradiation) and Pd/n-GaAs fabricated devices (junction realized after the virgin substrate irradiation) have been irradiated with 100?MeV Si7+ ions for the varying fluence of 1012–1013?ions/cm2. The devices have been characterized by I–V and C–V techniques for an electrical response. The electrical characterization of these devices shows the presence of interfacial layer. Moreover, the C–V characteristics show strong frequency dependence behavior, which indicates the involvement of interfacial charge layer with deep electron states. The hydrogenation of these devices has not caused any significant change in the electrical (I–V and C–V) characteristics. The observed results have been discussed in the realm of radiation-induced defects, which cause the carrier removal and compensation phenomena to cause the observed high resistivity and filling and unfilling of these traps’ level to cause strong frequency dependence behavior.  相似文献   

8.
In the present investigation we have electrochemically synthesized polypyrrole–poly (n-methylpyrrole) composite film with optimized process parameters (viz. concentration of monomers and dopant, applied current density, deposition time, pH of electrolyte etc.) on platinum substrate. The composite film of polypyrrole–poly (n-methylpyrrole) was subjected to electrical, spectral and morphological characterizations and its sensing response to various concentration of ammonia was also studied. Later, the synthesized composite films were irradiated under high vacuum (∼5×10−6 Torr) at room temperature with 85 MeV O7+ ion beam at various fluences from 1×105 to 1×107 ions/cm2. We have observed remarkable improvements in electrical and morphological properties suitable for gas-sensing applications. The irradiated composite film was evaluated for the sensing of various concentrations of ammonia and excellent improvement in terms of sensitivity, lower detection limit and response time was observed.  相似文献   

9.
Development of oxide dispersion strengthened (ODS) steels, as candidates for fuel claddings for Gen IV nuclear reactors, requires a comprehensive study of their behaviour under operating conditions. In this work, 1.2 MeV/amu Kr and Xe irradiation was used to simulate fission fragment impact. New irradiation approaches with respect to a non-homogeneous damage profile under ion irradiation were proposed. Hardness profiles of irradiated ODS steels were obtained by continuous stiffness measurements with subsequent analysis of size effects according to the Nix–Gao model. It was found, that heavy ion irradiation leads to hardness saturation in ODS steels in a damage dose range of 0.1–1 dpa. Observed hardening is about 20% and is not connected with the radiation stability of Y–Ti–O and Y–Al–O oxide particles in ODS steels as it was studied by TEM.  相似文献   

10.
张建民  徐可为 《中国物理》2004,13(2):205-211
Yield strengths in unpassivated and 530 nm TiN passivated Cu films deposited on Ti, high-speed steel and Ni substrates have been measured by x-ray diffraction (XRD) in combination with the four-point bending method. The results show that, although the texture and average grain size, investigated by XRD and transmission electron microscopy respectively, do not vary with different substrate, the yield strength of the Cu film increases obviously when a thin passivated layer is present and varies slightly with substrates. Many crackles appear in the passivated Cu film on Ti substrate but do not appear in other samples. The experimental results have been explained satisfactorily with an expression for the yield strength of thin films given previously.  相似文献   

11.
The spectroscopic properties, optic quality and thermal lensing effect of Nd~(3 ) ions in LaMgAl_(11)O_(19)(LNA) crystals are investigated and the dependence of the laser characteristics on above properties are discussed.  相似文献   

12.
Metal samples were arranged inside a “finger-type” high-pressure chamber (DHPC-FT) filled by deuterium. They were two aluminum rods, a copper rod, two specimens of homogeneous YMn2 alloy, and a stainless steel wire. The pressure of molecular deuterium in DHPC-FT was about 2 kbar. The samples were irradiated by braking γ-quanta at a threshold energy of 23 MeV. All the samples were studied using scanning electron microscopy (SEM) and X-ray (roentgen) microelement probe analysis (RMPA). Considerable changes in the surface structure and elemental composition were found for the samples of copper, aluminum, YMn2 alloy, and stainless steel. Unusual results were analyzed in detail and compared with the earlier data.  相似文献   

13.
Conical structures formed in 157 nm laser-ablated polycarbonate exhibit a well-defined fringe structure with a period of a few 100 nm surrounding the cone base. Experiments and modelling studies of the interference produced by these micro-conical mirrors are shown to provide a means of measuring the spatial coherence of the highly multi-mode 157 nm laser.  相似文献   

14.
The self-standing films of polymethyl methacrylate (PMMA) were irradiated under vacuum with 50?MeV lithium (Li3+) and 80?MeV carbon (C5+) ions to the fluences of 3?×?1014, 1?×?1015, 1?×?1016 and 1?×?1017 ions µm?2. The pristine and irradiated samples of PMMA films were studied by using ultraviolet–visible (UV–Vis) spectrophotometry, Fourier transform infrared, X-ray diffractrometer and atomic force microscopy. With increasing ion fluence of swift heavy ion (SHI), PMMA suffers degradation, UV–Vis spectra show a shift in the absorption band from the UV towards visible, attributing the formation of the modified system of bonds. Eg and Ea decrease with increasing ion fluence. The size of crystallite and crystallinity percentage decreases with increasing ion fluence. With SHI irradiation, the intensity of IR bands and characteristic bands of different functional groups are found to shift drastically. The change in (Eg) and (N) in carbon cluster is calculated. Shifting of the absorption band from the UV towards visible along with optical activity and as a result of irradiation, some defects are created in the polymer causing the formation of conjugated bonds and carbon clusters in the polymer, which in turn lead to the modification in optical properties that could be useful in the fabrication of optoelectronic devices, gas sensing, electromagnetic shielding and drug delivery.  相似文献   

15.
Poly(vinylidene fluoride–trifluoroethylene) 70/30 mol% copolymer has been irradiated with 3 MeV protons at doses ranging from 43 to 200 Mrad. The effects of irradiation on the polarization hysteresis, dielectric properties, lattice spacing, phase transition behavior and electric-field-induced strain have been studied. The irradiated copolymer exhibits the characteristic behavior of a relaxor ferroelectric, including frequency dispersion of the dielectric constant, which follows the Vogel–Fulcher rule. These results indicate that the proton irradiation breaks up the coherent polarization domains in the copolymer into nano-sized regions, thereby converting the copolymer to a relaxor ferroelectric. X-ray diffraction measurements show that the nano-sized regions are in the non-polar phase. Since the lattice spacing of the non-polar phase is substantially different from that of the polar phase, the local phase transformation between these two phases induced by an external electric field gives rise to a large lattice strain and hence a giant electrostrictive response. PACS 77  相似文献   

16.
《Physics letters. A》1986,116(1):25-29
Stopping powers of Ag have been measured for 0.7–1.6 MeV / amu 16O ions. The absolute accuracy is within 2.6%. The results are compared with previous experimental values and with compilations of Northcliffe and Schilling and of Ziegler. Effective charges are deduced from the experimental stopping powers with two different methods. One is of assuming the Z21 dependence of the stopping power and the other is of analyzing the stopping power with the Bethe-Bloch formula including the Z31 correction term. In the latter method, effective charges obtained are found to depend strongly on the magnitudes of the Z31 and Bloch correction terms.  相似文献   

17.
Creation of color centers in LiF under irradiation with 3–12-MeV Au ions was studied. Comparison of experimental data of color center creation with computer simulation of the energy deposition and elastic atomic displacements reveals the role of elastic collisions in defect creation by these ions, which have comparable magnitudes of electronic and elastic stopping. The experimentally measured efficiency of color center creation and that predicted by the simulation of elastic displacements have a similar dependence on the projectile energy. Thus, the color center creation is mainly associated with the elastic collisions, despite the relatively large values of the electronic stopping power for these ions.  相似文献   

18.
The AG-80 resin is a new type of thermosetting matrix for advanced carbon/epoxy composites. Mass loss effect and the related outgassing are major concerns for its application in space. The changes in mass loss, outgassing and chemical structure under 120 keV proton exposure were investigated for the AG-80 epoxy resin. The variation in chemistry was characterised by X-ray photoelectron spectroscopy. Experimental results show that by increasing the proton fluence, the surface colour of specimens becomes darker. Mass loss ratios ascend remarkably until the fluence of approximately 6.3×1015 cm?2 and then tend to level off. The surface roughness of specimens exhibits an increasing trend followed by a decreasing trend as a function of proton fluence. Under the exposure, the C?C, C?H, C?N and C?O bonds are broken, a variety of molecule ions with smaller molecular weight are formed and carbon is enriched in the surface layer of the specimens. The changes in mass loss and surface roughness of the AG-80 epoxy resin could be attributed to the formation of the molecule ions and the enrichment of carbon content in the surface layer due to proton radiation.  相似文献   

19.
In urban areas, the quantity of exhaust particles from vehicle emissions is tremendous and has been regarded as the main contributor to particulate matter (PM) pollution. Recently, the nano-sized PM on public health has begun to raise the attention. The increased toxicity of nanoparticulate can be largely explained by their small size, high airborne concentration, extensive surface area and high content of organic carbon and transition metals. We have attempted to address the toxicity of nano sized-particlulate matter by comparing various particulates including micro-SiO2 (mSiO2), nano-SiO2 (nSiO2), micro-TiO2 (mTiO2), and nano-TiO2 (nTiO2) in RAW264.7 cells and in vivo. The cell viability of all particulates decreased dose dependently. 24-h incubation with nSiO2 demonstrated apoptosis in RAW264.7 using Annexin-V binding immunofluorescent microscopy, but not in any other particulates. In vivo, cytotoxicity of nanosized was higher than micro-sized particulates. As higher the concentration of particulates, the more pulmonary injury and neutrophilic infiltration were observed in nano-sized than micro-sized particulates, respectively. Particularly, 5.0 mg/kg of mTiO2 never shows any increase of neutrophile even with high cellularity of total cells and macrophages. From these results, we suggested that particulate-induced respiratory toxicity be influenced by component, size, and dose of particulates including the characteristic nature of the target cells in vitro and in vivo.  相似文献   

20.
We present the computational approach for studying the microstructures of Cu clusters in Fe–Cu alloys by combining the molecular dynamics (MD) simulation and Monte Carlo methods. The MD simulation is used to characterize the primary damage resulting from the displacement cascade in Fe. Then, using the Metropolis Monte Carlo methods, the microstructure of the Cu clusters is predicted under the assumption that the system will evolve towards the equilibrium state. The formation of the Cu clusters is apparent for Fe–Cu alloys of a higher Cu content (1.0 w/o), whereas the degree of Cu clustering is not significant for the lower Cu content (0.1 w/o) alloys. The atomic configuration of the Cu–vacancy complex under irradiation, produced by this simulation, is in a fair agreement with the experiments. The simulation is expected to provide important information on the Cu-cluster morphology, which is useful for experimental data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号