首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Influence of physically adsorbed basic red 1 (BR1) dye on the physicochemical properties of natural zeolite (clinoptilolite) and clay (bentonite) was compared using adsorption, FTIR, and TG/DTA methods. A larger adsorption of the dye was observed for bentonite (0.143 mmol/g) than for clinoptilolite (0.0614 mmol/g) per gram of an adsorbent. However, the adsorption values are the same per surface unit (1.8 μmol/m2). The result (per gram) is due to location of dye molecules in interlayer and interparticle space of bentonite with much larger specific surface area than that of clinoptilolite. The dye adsorption leads to a decrease in the specific surface area and the pore volume of both minerals. The adsorption changes also a character of active sites and thermal stability. A TG study shows that the dye adsorption on bentonite changes adsorbed water amounts, weight loss, and decomposition temperature. In the case of zeolite, the dye adsorption insignificantly influences the thermal stability. The dehydration energy distributions calculated from the Q-TG and Q-DTG data demonstrate a complex mechanism of water thermodesorption and the influence of adsorbed dye on this process.  相似文献   

2.
The adsorption isotherms of Xe vapor at 196 K and supercritical Xe at 300 K on activated carbon fibers of different pore widths were gravimetrically measured. The adsorption isotherms of Xe vapor were compared with the N(2) adsorption isotherms. A Dubinin-Radushkevich (DR) plot of the adsorption isotherms of Xe vapor showed a good linearity, indicating that Xe vapor is adsorbed by the representative micropore filling mechanism. The adsorption isotherms of supercritical Xe were approximated by the Langmuir equation. The saturated adsorption amounts of supercritical Xe, W(L), were in the range of 0.14 to 0.22 ml g(-1). The adsorption isotherms of supercritical Xe were described by the supercritical DR equation, which provides the quasisaturated vapor pressure P(0q). Both P(0q) and W(L) lead to the reduced isotherm, which can describe three isotherms. The obtained reduced isotherm derived from the isotherms of supercritical Xe could describe even those of Xe vapor. Hence, both Xe vapor and supercritical Xe should be adsorbed by the same mechanism. The isosteric heat of Xe adsorption was greater than the enthalpy of vaporization of Xe by more than 12 kJ mol(-1). These results suggest that Xe molecules are stabilized in the form of a cluster in micropores even at 300 K. Copyright 2000 Academic Press.  相似文献   

3.
Adsorption characteristics of organosilica based mesoporous materials   总被引:1,自引:0,他引:1  
Hybrid organosilica mesoporous materials with pores of ordered three-dimensional hexagonal structure were prepared by the hydrolysis and co-condensation of 1,2-bis(triethoxysilyl)ethane with various concentrations of a surfactant as structure directing agents. The materials had high pore volume of 1-1.5 mL/g and high surface area from 1057 to 1445 m(2)/g. Adsorption measurement and adsorption calorimetry revealed that the prepared materials exhibited high hydrophobicity and high affinity toward nonpolar organic vapor such as n-hexane. The dynamic adsorption properties of the materials for n-hexane in the presence of water vapor showed that these hybrid organosilica materials preferentially adsorbed n-hexane vapor and were stable in the presence of water compared to the siliceous MCM48.  相似文献   

4.
In the Gibbs adsorption equation, the application of solvent activity for the calculation of the surface/interfacial excess is proposed for nonideal or associating or pseudocomponents such as asphaltenes. For the aforementioned systems, only the mass-based phenomenological interfacial excess can be determined based on interfacial tension versus activity data. The use of the mole fraction is compared to the use of the activity when the adsorbed amount of associating asphaltenes is calculated at a water/toluene interface. Langmuir-type isotherms describe the adsorption of asphaltenes at toluene/water interfaces. Asphaltenes were treated to remove the resins and natural surfactants using cyclic precipitation and dissolution of asphaltenes at a fixed aliphatic/aromatic ratio. Different fractions of asphaltenes were obtained by changing the aliphatic/aromatic ratio of the precipitating solvent. The limiting molar masses of asphaltenes measured by vapor pressure osmometry are different for fractions precipitated at different heptane to toluene ratios. The mass-based adsorbed amounts at the water/toluene interface, at a 0.1 asphaltene-to-toluene mass-ratio, varied in the range of 0.8-2.8 mg/m(2), depending on the molar mass of asphaltenes.  相似文献   

5.
我们用精密自动绝热量热计测定了几种不同吸附水含量的水/硅胶吸附体系在200~320 K温度范围内的热容. 结果表明, 当吸附水含量使表面复盖度(θ)大于1时, 在相应的C_p~T曲线上会出现吸附水的相变峰. 这说明吸附在硅胶表面上的水分子已经形成了聚集态; 而当θ<1时, 由于尚未形成聚集态水, 故没有相变过程出现, 其C_p~T曲线呈光滑状. 这些现象与H_2O/γ-Al_2O_3吸附体系是一致的. 又由于硅胶表面对水分子的吸附力较γ-Al_2O_3的要小, 故在同样的吸附量的C_p~T曲线上, 水/硅胶的峰要比H_2O/γ-Al_2O_3的尖锐, 且蜂温增高的速度要快. 这些都表明, 吸附在硅胶表面上的二维表相水会随吸附量的增加而以较快的趋势接近于体相水. 此外, 由不同含水量的C_p~T曲线外推, 求出了不含吸附水的硅胶在200~300 K范围内的热容.  相似文献   

6.
The adsorption isotherms of water at 303 K and N2 at 77 K on various kinds of porous carbons were compared with each other. The saturated amounts of water adsorbed on carbons almost coincided with amounts of N2 adsorption in micropores. Although carbon aerogel samples have mesopores of the great pore volume, the saturated amount of adsorbed water was close to the micropore volume which is much small than the mesopore volume. These adsorption data on carbon aerogels indicated that the water molecules are not adsorbed in mesopores, but in micropores only. The adsorption isotherms of water on activated carbon having micropores of smaller than 0.7 nm in width had no clear adsorption hysteresis, while the water adsorption isotherms on micropores of greater than 0.7 nm had a remarkable adsorption hysteresis above P/P0 = 0.5. The disappearance of the clear hysteresis for smaller micropores suggested that the cluster of water molecules of about 0.7 nm in size gives rise to the water adsorption on the hydrophobic micropores; the formation and the structure of clusters of water molecules were associated with the adsorption mechanism. The cluster-mediated pore filling mechanism was proposed with a special relevance to the evidence on the formation of the ordered water molecular assembly in the carbon micropores by in situ X-ray diffraction.  相似文献   

7.
Two mesoporous ordered carbon materials (MOCs) have been synthesized from silica templates by using sucrose as the carbon precursor. The textural characterization using Ar, N2, and CO2 adsorption combined with neutron diffraction showed that the two samples exhibit a significant microporous volume close to 0.5 cm3/g and an ordered network of mesopores. For both MCM48 and SBA15 templated carbons, adsorption first proceeds with the filling of micropores and then by the filling of mesopores with an adsorption energy close to the enthalpy of vaporization of bulk hydrogen. The hydrogen isosteric heat of adsorption in the micropores (6-8 kJ/mol) is significantly larger than that on the graphite surface (approximately 4 kJ/mol) but still too small for a reasonable use of these MOCs as hydrogen adsorbents for storage at room temperature. The neutron scattering study showed that the structure at 10 K of the adsorbed deuterium phase is poorly organized; it exhibits short and medium range orders of about 13 angstroms in micropores and about 20 angstroms in mesopores, respectively. The average distance between adsorbed molecules decreases with coverage by about 10%. In the mesopores, the diffracted line is consistent with a pseudohexagonal packing.  相似文献   

8.
The purpose of this work is to study the possibility of anionic dyes Reactive Red M-8B(RR) and Direct Green B(DG) adsorbed on chitosan-modified diatomite. The characteristics of adsorbent, adsorption isotherms and the influence of adsorption time, temperature and pH were researched in this work. The results show that the mo- dified diatomite had a much better adsorption capability than the natural diatomite. The adsorption capacities of chitosan-modified diatomite for RR and DG were 94.46 and 137.0 mg/g, respectively. Both adsorption time and adsorption temperature provided a positive effect on the dye adsorption. Within the experimental pH range, the adsorbance was enhanced at lower pH but reduced sharply at high pH. On the basis of the experimental results and discussion, electrostatic attraction is considered as the main mechanism of this chemisorption.  相似文献   

9.
The aim of this study is the development of a new adsorbent for the desiccant material which can be regenerated by the domestic exhaust heat by using natural mesoporous material, Wakkanai siliceous shale. To improve this shale’s performance to adsorb/desorb the water vapor, lithium chloride, calcium chloride or sodium chloride was supported into the mesopores by impregnating with each chloride solution. Especially sodium chloride was effective to increase the water vapor adsorption amount 5–7 times of that of natural shale in the relative humidity range from 50 to 70%. Moreover, the appropriate impregnating concentrations were determined as 5wt% from the relationship between the maximum water vapor adsorption amount and the mesopore volume. Based on these results, a new desiccant filter has been developed by impregnated original paper with lithium chloride and sodium chloride. This paper contained shale powder in the synthetic fibers. The dehumidification performance of this filter was evaluated under the simulated summer condition in Tokyo. From the cyclic adsorption/regeneration test, this shale and chlorides filter could adsorb and desorb 60 g/h water vapor repeatedly at the regeneration temperature of 40°C. On the other hand, a silica gel filter and a zeolite filter adsorbed and desorbed only 10 g/h and 25 g/h, respectively. These results suggested that the shale impregnated with the chlorides has the best dehumidification ability as a new desiccant material. Further, the desiccant filter made from the shale will achieve the effective use of the low temperature exhaust heat.  相似文献   

10.
The interaction between DNA and mesopores is one of the basic concerns when mesoporous silica nanoparticle (MSN) is used as a DNA carrier. In this work, we have synthesized a type of mesoporous silica nanoparticle that has a Fe(3)O(4) inner core and mesoporous silica shell. This magnetic mesoporous silica nanoparticle (denoted as M-MSN) offers us a convenient platform to manipulate the DNA adsorption and desorption processes as it can be easily separated from solution by applying a magnetic field. The DNA adsorption behavior is studied as a function of time in chaotropic salt solution. The maximum amount of adsorbed DNA is determined as high as 121.6 mg/g. We have also developed a method to separate the DNA adsorbed onto the external surface and into the mesopores by simply changing temperature windows. The desorption results suggest that, within the whole adsorbed DNA molecules, about 89.5% has been taken up by M-MSN mesopores. Through the dynamic light scattering experiment, we have found that the hydrodynamic size for M-MSN with DNA in its mesopores is higher than the naked M-MSN. Finally, the preliminary result of the adsorption mechanism study suggests that the DNA adsorption into mesopores may generate more intermolecular hydrogen bonds than those formed on the external surface.  相似文献   

11.
Two kinds of nanocrystalline alumina powders, boehmite (gamma-AlOOH, particle size d approximately 10 nm, BET surface area A(BET) = 180-200 m(2) g(-1)) and corundum (alpha-Al(2)O(3), d approximately 400 nm, A(BET) = 7 m(2) g(-1)) were used for comparative investigation by thermogravimetry (TG). The remarkable difference in the dehydration profiles between the two samples gives evidence for a distinct difference in their structures. In the following pyridine adsorption/desorption experiment, gamma-alumina was found to possess much more (20 times) and much stronger acidic sites than corundum. The activation energy of pyridine desorption was obtained from the respective minima in the first derivative of the TG-curves (DTG) at various heating rates (1-20 K min(-1)); the activation energy for pyridine desorption is smaller for gamma-alumina (61.5 kJ mol(-1)) than for corundum (78.8 kJ mol(-1)). Furthermore, the adsorption of water, carbon tetrachloride, and hexane on those alumina specimens provides evidence for the highly hydrophilic nature of their surfaces. The shift of T(max) to higher temperatures upon desorption of water was ascribed to the different adsorption coverage and the different energy required for removal of adsorbed water molecules.  相似文献   

12.
TG, DTA, and DTGA study of water vapor adsorption on ZnO showed that the water vapor was adsorbed reversibly at 500°C (0.12 mg/g ZnO). Irreversible desorption of water vapor was also found at approximately 270°C. Both the specific surface area and the amount of water vapor adsorbed reversibly decreased with increasing annealing temperature above 500°C. When as-received ZnO was ground, the amount of water vapor adsorbed reversibly decreased sharply before any significant change took place in the specific surface area. At longer grinding time, the specific surface area increased but the amount of water vapor adsorbed reversibly increased only slightly with the grinding time. When the specimen was ground after annealing, the reversible adsorption of water vapor was not affected by the thermal history before grinding.  相似文献   

13.
Melamine formaldehyde resins were synthesized with encapsulated CaCl(2) as a template. Carbonization at high temperatures led to the formation of carbon materials containing N atoms. Washing with de-ionized water removed encapsulated CaCl(2), resulting in the formation of mesopores (3-30 nm) with the high surface areas (770-1300 m(2)/g). The template can be recycled and the method is simple and cost effective as compared to the hard template techniques. The mesoporous carbons containing nitrogen (NMC) thus prepared exhibited the amphipathic surfaces (both hydrophilic and lipophilic) and adsorbed great amount of water and benzene. In addition, the incorporated N atoms exhibited quite strong basicity for the adsorption of great amount of SO(2).  相似文献   

14.
The structural and adsorptive characteristics of six activated carbons were studied by means of nitrogen and benzene adsorption and water desorption. Tert-butylbenzene (TBB) breakthrough dynamics was analyzed by using several integral equations solved with a regularization/singular-value decomposition procedure. TBB interaction with texturally different activated carbons with the presence of preadsorbed or adsorbed water under dynamic conditions was illustrated by the breakthrough plots handled with several models. The influence of the type of activated carbons, their pore size distributions, water vapor, and TBB flow rate on the breakthrough times (tb) and the dynamic capacity of the carbon beds has been explored with better results for a carbon sample possessing a maximal contribution of mesopores at half-width x>1.5 nm among the carbons studied (which also appears on benzene adsorption) and a major contribution of microporocity as VDS/Vp approximately 0.88 and SK/SBET approximately 0.15. Another adsorbent, which is characterized by a similar total porosity but a larger micropore volume, a smaller contribution of mesopores (SK/SBET approximately 0.08), greater total and miroporous specific surface areas, and greater intensity of the pore size distribution at x<1.5 nm, shows the second result in dynamic TBB retention.  相似文献   

15.
We have demonstrated the fabrication of a colloidal crystalline array (synthetic opal) from monodispersed mesoporous silica spheres (MMSS) and the control of its optical response simply by changing the amount of benzene vapor adsorbed into the pores of MMSS. It was revealed that the refractive index of the colloidal crystal of MMSS showed an 11.7% increase by taking advantage of benzene adsorption, and thereby, the structural color changed reversibly. We also conducted the same measurement on silica spheres without mesopores and observed no change in the refractive index or the structural color. This optical response gives rise to the possibility of using MMSS colloidal crystals not only for controlling light reflection but also as sensing devices based on color change due to vapor adsorption. We have also incorporated an organic dye, the porphyrin derivative alpha,beta,chi,delta,-tetrakis(1-methylpyridinium-4-yl)porphyrin rho-toluenesulfonate (TMPyP), into the pores of MMSS. By adopting an electrophoretic deposition process in ethanol, periodic arrays fabricated from TMPyP-MMSS conjugates with absolute zeta-potentials near zero were obtained. The Bragg diffraction peak of the colloidal crystalline array shifted to longer wavelengths due to an increase in the refractive index with increasing amounts of TMPyP adsorbed in the pores. The current work demonstrates the new possibility of creating colloidal crystals from MMSS with mesopores filled with various kinds of adsorbates to control the optical response effectively.  相似文献   

16.
A simple and engineering friendly one-step process has been used to prepare zirconium titanium mixed oxide beads with porosity on multiple length scales. In this facile synthesis, the bead diameter and the macroporosity can be conveniently controlled through minor alterations in the synthesis conditions. The precursor solution consisted of poly(acrylonitrile) dissolved in dimethyl sulfoxide to which was added block copolymer Pluronic F127 and metal alkoxides. The millimeter-sized spheres were fabricated with differing macropore dimensions and morphology through dropwise addition of the precursor solution into a gelation bath consisting of water (H(2)O beads) or liquid nitrogen (LN(2) beads). The inorganic beads obtained after calcination (550 °C in air) had surface areas of 140 and 128 m(2) g(-1), respectively, and had varied pore architectures. The H(2)O-derived beads had much larger macropores (5.7 μm) and smaller mesopores (6.3 nm) compared with the LN(2)-derived beads (0.8 μm and 24 nm, respectively). Pluronic F127 was an important addition to the precursor solution, as it resulted in increased surface area, pore volume, and compressive yield point. From nonambient XRD analysis, it was concluded that the zirconium and titanium were homogeneously mixed within the oxide. The beads were analyzed for surface accessibility and adsorption rate by monitoring the uptake of uranyl species from solution. The macropore diameter and morphology greatly impacted surface accessibility. Beads with larger macropores reached adsorption equilibrium much faster than the beads with a more tortuous macropore network.  相似文献   

17.
Two SiO2 and three Al2O3 adsorbents with varying degrees of mesoporosity (pore diameter 2-50 nm) were reacted with 2,4-dichlorophenoxyacetic acid (2,4-D) at pH 6 to investigate the effects of intraparticle mesopores on adsorption/desorption. Anionic 2,4-D did not adsorb onto either SiO2 solid, presumably because of electrostatic repulsion, but it did adsorb onto positively charged Al2O3 adsorbents, resulting in concave isotherms. The Al2O3 adsorbent of highest mesoporosity consistently adsorbed more 2,4-D per unit surface area than did the nonporous and less mesoporous Al2O3 adsorbents over a range of initial 2,4-D solution concentrations (0.025-2.5 mM) and reaction times (30 min-55 d). Differences in adsorption efficiency were observed despite equivalent surface site densities on the three Al2O3 adsorbents. Hysteresis between the adsorption/desorption isotherms was not observed, indicating that adsorption is reversible. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy studies confirm that 2,4-D adsorption does not occur via ligand exchange, but rather via electrostatic interaction. The results indicate that adsorbent intraparticle mesopores can result in consistently greater 2,4-D adsorption, but the amount adsorbed is dependent upon surface charge and the presence of adsorbent mesoporosity. The data also suggest that when mineral pores are significantly larger than the adsorbate, they do not contribute to diffusion-limited adsorption/desorption hysteresis. Adsorbent transformations through time are discussed.  相似文献   

18.
Water-vapor adsorption on poorly crystalline boehmite (PCB) was studied using a gravimetric FTIR apparatus that measured FTIR spectra and water adsorption isotherms simultaneously. The intensity of the delta(HOH) band of adsorbed water changed linearly with water content and this linear relationship was used to determine the dry mass of the sample. Adsorption and desorption isotherms of PCB showed a Type IV isotherm. The BET(H2O) surface area of PCB was 514+/-36 m2/g. The mean crystallite dimensions of PCB were estimated to be 4.5 x 2.2 x 10.0 nm (dimensions along the a, b, and c axes, respectively) based on application of the Scherrer equation to powder diffraction data of PCB. A surface area value of 504+/-45 m2/g calculated using the mean crystallite dimensions was in good agreement with the BET(H2O) surface area. This work also demonstrated a method to determine surface areas for materials with minimal perturbation of their surface structure. In addition, the FTIR spectra of PCB were influenced by changes in water content. The delta(AlOH) band at 835 cm(-1) observed under dry conditions was assigned to the non-H-bonded surface OH groups. As the amount of adsorbed water increased, the intensity at 835 cm(-1) decreased and that at 890 and 965 cm(-1) increased. The 890- and 965-cm(-1) bands are assigned to surface OH groups H-bonded with adsorbed water.  相似文献   

19.
Adsorption of water vapour from humid air by selected carbon adsorbents   总被引:2,自引:0,他引:2  
The water uptake by carbon molecular sieves (CMS) and graphitized carbons, all of which are used to determine volatile organic compounds in air, was investigated using a direct experimental approach. CMS, e.g. Carboxen 1002, Carboxen 1003 and Anasorb CMS adsorb substantial amounts of water, in the range 400 to 450 mg per gram of adsorbent. Graphitized carbons, e.g. Carbrogaph 5TD and Carbopack X show low water trapping, less than 30 mg g(-1) and Carbopack Y as little as 5 mg g(-1) or less. The water sorption capacity for graphitized carbons is strongly dependent on the relative humidity (RH). The change of RH from 95 to 90% decreases the amount of adsorbed water by more than a factor of 2. Two different water adsorption mechanisms are operative: adsorption on polar centers and micropore volume filling. For graphitized carbons and CMS at low RH, adsorption on polar centers is involved. For CMS, once the threshold value of relative humidity (RHth) is surpassed, micropore volume filling becomes predominant. RHth is 44 +/- 3 and 42 +/- 3% for Carboxen 1002 and 1003, respectively, and 32 +/- 3% for Anasorb CMS. The CMS mass in the trap was found not to affect the mass of retained water under condition of incomplete saturation of adsorbent bed with water. Thus, the restrictions commonly imposed on the CMS mass are not necessary. The dry purging technique is suggested to remove adsorbed water. Carbograph 5TD and Carbopack X require only a few hundred ml of dry air to remove adsorbed water entirely. Water can also be purged out from CMS; however, much larger volumes of dry air are needed.  相似文献   

20.
Interactions between polycations and core-corona particles are governed by ion-exchange reactions, entropically favored by the release of counterions. This complexation process allows the chains to penetrate into the shell, leading to adsorbed amounts greater than 1 mg m(-2). The destabilization occurs quickly, the domain of flocculation becomes larger when the concentration of monovalent salts is increased, and aggregates are composed of small and very compact clusters in a more or less self-similar structure at large scale. The adsorption of copolymers of low cationicity is characterized by still larger adsorbed amounts and layers thicker than the radius of gyration of the macromolecules. Depending on the charge content, the enhancement of the ionic strength can either promote the destabilization of the suspension or conversely induce the desorption of the chain. In pure water the structure of the flocs is long-range ordered and it becomes more heterogeneous in ionic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号