首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

2.
The complexes of transition metal ions with an azamacrocyclic tetradentate nitrogen donor [N4] ligand viz. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetramethyltricyclo[15.3.1.1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) have been synthesized. All the complexes were found to have general composition M(L)X2 [where M = manganese(II), cobalt(II), nickel(II) and copper(II) and X = Cl- & NO3-]. All the complexes are characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, EPR spectral and cyclic voltammetric studies. An octahedral geometry was assigned for Mn(II), Co(II) and Ni(II) complexes and tetragonal for Cu(II) complexes. The biological actions of the ligand and complexes have been screened in vitro against many bacteria and pathogenic fungi to study their comparative capacity to inhibit the growth.  相似文献   

3.
The electronic absorption spectra of 1-(4,6-dimethyl-pyrimidin-2-ylazo)-naphthalen-2-ol is studied in organic solvents of different polarity as well as in buffer solutions of varying pH values at different temperatures and different ratios of methanol. The probable structure of the azodye has been assigned on the basis of spectral studies (IR and (1)H NMR). The effect of Co(II), Ni(II) and Cu(II) ions on the emission spectrum of the free azodye is also assigned. The stoichiometry of the metal complexes is determined spectrophotometrically and conductometrically. Novel complexes of Co(II), Ni(II) and Cu(II) with the pyrimidine azodye have been synthesized and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic as well as ESR spectral studies The thermal decomposition of the metal complexes is studied by TGA and DTA techniques. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated.  相似文献   

4.
V(III), Cr(III), Mn(II) and Fe(II) methylsulphates form stable donor-acceptor complexes with nitrogen donors. 1:1 and 1:2 complexes with bipyridyl have been prepared in respect of trivalent salts and 1:2 and 1:4 metal:base complexes have been obtained in respect of divalent metal salts with bipyridyl and pyridine respectively. Electronic spectra suggest an octahedral geometry around metal ions. IR spectra of the anhydrous metal methylsulphates have been studied and assigned. The changes in the IR spectra of the methylsulphate group in different stereochemical situations have been observed.  相似文献   

5.
Manganese(II), cobalt(II), nickel(II), and copper(II) complexes are synthesized with a novel tetradentate ligand, viz. 1,5,9,13-tetraaza-6,14-dioxo-8,16-diphenylcyclohexadecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to be nonelectrolyte nature for Mn(II), Co(II), and Cu(II) whereas 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X(2)] and [Ni(L)]X(2), respectively (where M = Mn(II), Co(II), and Cu(II) and X = Cl- and NO(3-)). On the basis of IR, electronic, and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro.  相似文献   

6.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes with 1,5,11,15-tetraaza-21,22-dioxo-tricyclo [19,3,1,I6,10]-5,10,15-20-dicosatetraene (L), as a new macrocyclicligand, have been synthesized with and characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature of Mn(II), Co(II) and Cu(II) complexes, while showing a 1:2 electrolyte for thew Ni(II) complexe. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl- and NO3 -). On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for Mn(II) and Co(II), a square planar for Ni(II) and tetragonal for Cu(II) complexes. In vitro ligand and its metal complexes were also screened against the growth of some fungal and bacterial species in order to assess their antimicrobial properties.  相似文献   

7.
Ni(II) and Cu(II) complexes having the general composition [M(L)(2)X(2)] [where L=2-pyridinecarboxaldehyde thiosemicarbazone, M=Ni(II) and Cu(II), X=Cl(-), NO(3)(-) and 1/2 SO(4)(2-)] have been synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, EPR and electronic spectral studies. The magnetic moment measurements of the complexes indicate that all the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) complexes whereas tetragonal geometry for Cu(II) except [Cu(L)(2)SO(4)] which posseses five coordinated geometry. The ligand and its metal complexes were screened against phytopathogenic fungi and bacteria in vitro.  相似文献   

8.
Summary Complex compounds of cobalt(II), copper(II) and zinc(II) with bis(benzoin)thiocarbohydrazide have been synthesised. The ligand is probably coordinated to the metal ions as an ONNO tetradentate donor, giving rise to binuclear metal complexes with a halogen bridge. Structures have been assigned on the basis of analyses, conductance, magnetic susceptibility, i.r., electronic spectra and molecular weight data.  相似文献   

9.
Mn(II), Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L) derived from pyrrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurement, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO indicates that the complexes are non-electrolyte except Co(L)2(NO3)2 and Ni(L)2(NO3)2 complexes which are 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Mn(II), Co(II) and Ni(II) complexes except Co(L)2(NO3)2 and Ni(L)2(NO3)2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.  相似文献   

10.
Cobalt(II), nickel(II) and copper(II) complexes having the general composition M(L)X2 (where M = CO(II), Ni(II) and Cu(II), L = ligand, i.e. 3,4,12,13-tetraketo-2,5,11,14,19,20-hexaazatricyclo[13.3.1.1(6-10)]cosane; 1(19),6,8,10(20),15,17-hexaene and X stands for Cl-; NO3- and SO42-), have been prepared. The structure of the complexes has been elucidated by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The magnetic moment measurements of the complexes indicate that the metal ion is in high-spin state. On the basis of IR, electronic and EPR spectral studies an octahedral geometry was assigned for Co(II) and Ni(II) complexes whereas tetragonal geometry for Cu(II) complexes. This ligand and its complexes were also screened against bacteria and pathogenic fungi in vitro.  相似文献   

11.
Palladium(II) and Platinum(II),(IV) complexes with 2-aminopyrimidine derivatives (L1)–(L3), prepared by reacting the corresponding metal halide with the ligand in the required stoichiometric ratio, were characterised by chemical analyses and physical measurements. The structures have been assigned on the basis of i.r. spectroscopy, electronic reflectance spectra and molar conductivities.  相似文献   

12.
Complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with 3-(2-pyridyl)-1-(2-hydroxy phenyl)-2-propen-1-one (PHPO), 3-(1-naphthyl)-1-(2-hydroxy phenyl)-2-propen-1-one (NHPO) and 3-(3,4-dimethoxy phenyl)-1-(2-hydroxy phenyl)-2-propen-1-one (DMPHPO) have been synthesized and characterized by analytical, conductivity, thermal, magnetic, infrared, electronic and electron spin resonance data. Based on analytical data the stoichiometry of the complexes has been found to be 1 : 2. The conductivity data show that all these complexes are non-electrolytes. The infrared spectral data indicate that the ligand PHPO acts as uninegative tridentately towards Co(II) and Ni(II) and bidentately with Cu(II), Zn(II) and Cd(II). Ligands like NHPO and DMPHPO act as uninegative bidentately with all the metal ions. The electronic spectral data suggest that all the Co(II) complexes and Ni(II) of PHPO complex are octahedral and all the Cu(II) and Ni(II) of NHPO and DMPHPO complex are square-planar. The complex of Zn(II) and Cd(II) are tetrahedral. ESR parameters of Cu(II) complexes have been calculated and relevant conclusions have been drawn with respect to the nature of bonds present in them.  相似文献   

13.
The ligand aminocyclodiphosph(V)azane derivative (III) and its complexes with Co(II), Ni(II), and Cu(II) ions were prepared and characterized by microanalytical, FTIR, 1H, 13C, and 31P-NMR, UV/Visible, thermogravimetric (TGA) analysis, and magnetic moments. The ligand acts in a tetrahedral manner forming 2:1 metal to ligand ratio. The copper complex is assigned to be tetrahedral while cobalt and nickel complexes were assigned to be octahedral structure.  相似文献   

14.
《Polyhedron》1987,6(8):1653-1656
Two new quadridentate Schiff base ligands formed from 2,5-hexanedione and S-alkyldithiocarbazic acids and their nickel(II), zinc(II) and cadmium(II) complexes having the general formula [M(SNNS)] (SNNS2− is the dinegatively charged ligands) have been synthesized and characterized by elemental analysis and magnetic and spectroscopic methods. The Ni(SNNS) complexes are diamagnetic and square-planar. The Zn(SNNS) complexes are assigned with polymeric structures with mercapto sulphur-bridging. The Cd(SNNS) complexes presumably have polymeric structures.  相似文献   

15.
The electronic absorption spectra of 2-(2-hydroxynaphthylazo)-4-hydroxy-6-methyl-1,3-pyrimidine in pure organic solvents of different polarities and in buffer solutions of varying pH are studied. The important bands in the IR and the main signals in the (1)H NMR spectra are assigned. The observed UV-vis absorption bands are assigned to the corresponding electronic transitions. The molecular stoichiometry, stability constant, absorption maximum, molar absorptivity and Sandell's sensitivity of the complexes are calculated. Obeyence to Beer's law and Ringbom optimum concentration ranges are also determined. The ability of using the titled azodye as metalochromic indicator in complexometric titrations was also studied. The effect of Co(II), Ni(II) and Cu(II) ions on the fluorescence of the azodye is also considered. The solid Cu(II) complexes of the titled azodye have been prepared and characterized by elemental, IR, UV-vis spectra as well as by conductometric and magnetic measurements. The data suggest square planar geometry for 1:1 and 1:2 (M:L) complexes. The thermal behaviour of the complexes has been studied. The kinetic parameters (n, E, A, deltaH, DeltaS and deltaG) of the thermal decomposition steps are computed using Coats-Redfern equations.  相似文献   

16.
A series of new mixed ligand complexes of Zn(II), Cd(II), and Hg(II) with cis-3,7-dimethyl-2,6-octadienthiosemicarbazone (CDOTSC; LH) and N-phthaloyl amino acids (AH) have been synthesized by the reaction of metal dichloride with ligands CDOTSC and N-phthaloyl derivative of DL-glycine (A1H), L-alanine (A2H), or L-valine (A3H) in a 1:1:1 molar ratio in dry refluxing ethanol. All the isolated complexes have the general composition [M(L)(A)]. The plausible structure of these newly synthesized complexes has been proposed on the basis of elemental analyses, molar conductances, molecular weight measurement, and various spectral (IR, 1H NMR, and 13C NMR) studies, and four coordinated geometries have been assigned to these complexes. All the complexes and ligands have been screened for their antibacterial activity.  相似文献   

17.
Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L1) and semicarbazone (L2) derived from 2-acetyl furan. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Ni(L)2(NO3)2, which is 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except nitrato complexes of Ni(II) which is of tetrahedral geometry, whereas tetragonal geometry for Cu(II) complexes.  相似文献   

18.
Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from pyrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies .The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Co(L1)2(NO3)2 and Ni(L1)2(NO3)2 complexes which are 1:2 electrolytes. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except Co(L1)2(NO3)2 and Ni(L1)2(NO3)2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.  相似文献   

19.
New azo-azomethine dyes were prepared by reaction of p-aminobenzoic acid, o-anisidine, o-nitroaniline, and p-bromoaniline with salicylaldehyde respectively to form azo compounds and then condensation by urea to form 4-(R-arylazo 2-salicylaldene)-urea azo-azomethine derivatives (I(a-d)). The complexes of these ligands with Ag(I), Cu(II), Zn(II) and Hg(II) metal ions were prepared. The structure of the free ligands and their complexes were characterized by using elemental analysis (C, H, N), (1)H NMR, IR and UV-Vis-spectra. The proton dissociation constants of the ligands and the stability constant of their complexes have been determined potentiometrically in 40% (v/v) alcohol-water medium as well as the stoichiometry of complexes were determined conductometrically. The data reveal that the stoichiometries for all complexes were prepared in molar ratios (1:1) and (1:2) (M:L). The electrolytic and nonelectrolytic natures of the complexes were assigned based on molar conductance measurements. The thermogravimetric (TG), and differential thermal analyses (DTA) were studied in nitrogen atmosphere with heating rate 10°C/min. The kinetic and thermodynamic parameters for thermal decomposition of complexes have been calculated by graphical method using Coats-Redfern (CR) method.  相似文献   

20.
The first achiral bent-core banana-shaped bidentate ligands and their Cu(II) and Pd(II) metal complexes have been synthesized and investigated for mesomorphic behaviour. The bidentate ligands exhibit only one enantiotropic mesophase. The ligand having C 6 -alkoxy chains shows a mesophase that has been assigned as a two-dimensional B 1 phase while the C 8 and C 10 homologues stabilize the fluid B 2 mesophase showing antiferroelectric switching characteristics. In constrast, their corresponding Cu(II) and Pd(II) metal complexes are non-mesomorphic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号