首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A V2O5/Al2O3 mixed solids sample was prepared with a molar ratio of 0.41 Na2O (4 and 10 mol%) was added in the form of sodium nitrate prior to calcination in air in the temperature range 500–1000C. Solid-solid interactions between V2O5 and Al2O3 were studied using DTA and TG curves and their derivatives together with XRD techniques.The results obtained showed that Na2O interacted with V2O5 at temperatures starting from 500C to yield a sodium/vanadium compound, Na0.3V2O5 which remained stable and decomposed in part by heating at 1000C. V2O5 exists in orthorhombic and monoclinic forms in the case of pure mixed solids and those containing 4 mol% of Na2O and preheated at 500C, and in monoclinic form in the case of the mixed solid doped with 10 mol% of Na2O.Heating of pure and doped mixed oxide solids at 650C resulted in the conversion of most of the V2O5 into AlVO4. Doping with sodium oxide enhanced the solid-solid interaction between V2O5 and Al2O3 at 650C to produce AlVO4. The produced AlVO4 decomposed completely on heating at 700C to form -Al2O3 and V2O5, (orthorhombic and monoclinic forms).The presence of Na2O was found to decrease the relative intensity of the diffraction lines of -Al2O3 (corundum) produced at 750C which indicated some kind of hindrance of the crystallization process.Heating of pure and doped mixed solids at 1000C resulted in a further crystallization of acorundum together with V2O5 and sodium vanadate, Na0.3V2O5. However, the intensities of diffraction lines relative to those of the sodium vanadium compound were found to decrease markedly by heating at 1000C, indicating partial thermal decomposition into vanadium and aluminium oxides.  相似文献   

2.
Subsolidus phase equilibria and crystal chemistry were studied for the La2O3-MgO-TiO2 system and for the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3 in the quaternary La2O3-CaO-MgO-TiO2 system. Dielectric properties (relative permittivity and temperature coefficient of resonant frequency, τf) were measured at 5-10 GHz and mapped onto the phase equilibria relations to reveal the compositions of temperature-stable (τf=0) compounds and mixtures. Phase equilibria relations were obtained by X-ray powder diffraction analysis of approximately 80 specimens prepared by solid-state reactions in air at ∼1450°C. Six ternary phases were found to form in the La2O3-MgO-TiO2 system, including the three previously reported compounds LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, and “La6MgTi4O18”; and the new phases La10MgTi9O34, La9Mg0.5Ti8.5O31, and a perovskite-type solid solution (1−x)LaMg1/2Ti1/2O3-xLa2/3TiO3 (0?x?0.5). The phase previously reported as “La6MgTi4O18” was found to form off-composition, apparently as a point compound, at La6Mg0.913Ti4.04O18. Indexed experimental X-ray powder diffraction patterns are given for LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, La6Mg0.913Ti4.04O18, La10MgTi9O34, and La9Mg0.5Ti8.5O31. LaMg1/2Ti1/2O3 exhibits a slightly distorted perovskite structure with ordered B-cations (P21/n; a=5.5608(2) Å, b=5.5749(3) Å, c=7.8610(5) Å, β=90.034(4)°). La5Mg0.5Ti3.5O15 (Pm1; a=5.5639(1), c=10.9928(5) Å) and La6Mg0.913Ti4.04O18 (R3m; a=5.5665(1), c=39.7354(9) Å) are n=5 and n=6 members, respectively, of the (111) perovskite-slab series AnBn−1O3n. The new phases La10MgTi9O34 (a=5.5411(2), b=31.3039(9), c=3.9167(1) Å) and La9Mg0.5Ti8.5O31 (a=5.5431(2), b=57.055(1), c=3.9123(1) Å) are n=5 and n=4.5 members, respectively, of the (110) perovskite-slab series AnBnO3n+2, which exhibit orthorhombic subcells; electron diffraction revealed monoclinic superlattices with doubled c-parameters for both compounds. Extensive perovskite-type solid solutions form in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. The La2O3-MgO-TiO2 system contains two regions of temperature-stable (τf=0) compositions. The quaternary La2O3-CaO-MgO-TiO2 system contains an extensive single-phase perovskite-type volume through which passes a surface of temperature-stable compositions with permittivities projected to be in the 40-50 range. Traces of this surface occur as lines of τf=0 perovskite-type phases in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3.  相似文献   

3.
Interaction energies between two similar plane parallel double layers for (NH4)2Fe(SO4)2 or (NH4)2Cu(SO4)2 type complex salt electrolytes at positive surface potential were expanded in a power series and accurate numeral results were given for 0.1 ≤ y e  < y 0 ≤ 20. The general expressions were given for the interaction energies of A ν +B ν′ +Cν? type complex salt electrolytes at y > 0. The interaction energies for simple salts NaCl, CaCl2, Na2SO4, FeCl3, Na3PO4, Mg3(PO4)2, Al2(SO4)3, and complex salts (NH4)2Fe(SO4)2 or (NH4)2Cu(SO4)2 at y 0 = 1 were compared. There was hardly difference between these simple salts and this complex salt for the interaction energies. The interaction energy for complex salt (NH4)2Fe(SO4)2 was close to that for simple salt Na3PO4.

Supplemental files are available for this article. Go to the publisher's online edition of the Journal of Dispersion Science and Technology to view the free supplemental file.  相似文献   

4.
The three copper(II)-arsenates were synthesized under hydrothermal conditions; their crystal structures were determined by single-crystal X-ray diffraction methods:Cu3(AsO4)2-III:a=5.046(2) Å,b=5.417(2) Å,c=6.354(2) Å, =70.61(2)°, =86.52(2)°, =68.43(2)°,Z=1, space group ,R=0.035 for 1674 reflections with sin / 0.90 Å–1.Na4Cu(AsO4)2:a=4.882(2) Å,b=5.870(2) Å,c=6.958(3) Å, =98.51(2)°, =90.76(2)°, =105.97(2)°,Z=1, space group ,R=0.028 for 2157 reflections with sin / 0.90 Å–1.KCu4(AsO4)3:a=12.234(5) Å,b=12.438(5) Å,c=7.307(3) Å, =118.17(2)°,Z=4, space group C2/c,R=0.029 for 1896 reflections with sin / 0.80 Å–1.Within these three compounds the Cu atoms are square planar [4], tetragonal pyramidal [4+1], and tetragonal bipyramidal [4+2] coordinated by O atoms; an exception is the Cu(2)[4+1] atom in Cu3(AsO4)2-III: the coordination polyhedron is a representative for the transition from a tetragonal pyramid towards a trigonal bipyramid. In KCu4(AsO4)3 the Cu(1)[4]O4 square and the As(1)O4 tetrahedron share a common O—O edge of 2.428(5) Å, resulting in distortions of both the CuO4 square and the AsO4 tetrahedron. The two Na atoms in Na4Cu(AsO4)2 are [6] coordinated, the K atom in KCu4(AsO4)3 is [8] coordinated by O atoms.Die drei Kupfer(II)-Arsenate wurden unter Hydrothermalbedingungen gezüchtet und ihre Kristallstrukturen mittels Einkristall-Röntgenbeugungsmethoden ermittelt:Cu3(AsO4)2-III:a = 5.046(2) Å,b = 5.417(2) Å,c = 6.354(2) Å, = 70.61 (2)°, = 86.52(2)°, = 68.43(2)°,Z = 1, Raumgruppe ,R = 0.035 für 1674 Reflexe mit sin / 0.90 Å–1.Na4Cu(AsO4)2:a = 4.882(2) Å,b = 5.870(2) Å,c = 6.958(3) Å, = 98.51(2)°, = 90.76(2)°, = 105.97(2)°,Z = 1, Raumgruppe ,R = 0.028 für 2157 Reflexe mit sin / 0.90 Å–1.KCu4(AsO4)3:a = 12.234(5) Å,b = 12.438(5) Å,c = 7.307(3) Å, = 118.17(2)°,Z = 4, Raumgruppe C2/c,R = 0.029 für 1896 Reflexe mit sin / 0.80 Å–1.Die Cu-Atome in diesen drei Verbindungen sind durch O-Atome quadratisch planar [4], tetragonal pyramidal [4 + 1] und tetragonal dipyramidal [4 + 2]-koordiniert; eine Ausnahme ist das Cu(2)[4 + 1]-Atom in Cu3(AsO4)2-III: Das Koordinationspolyeder stellt einen Vertreter des Übergangs von einer tetragonalen Pyramide zu einer trigonalen Dipyramide dar. In KCu4(AsO4)3 haben das Cu(1)[4]O4-Quadrat und das As(1)O4-Tetraeder eine gemeinsame O—O-Kante von 2.428(5) Å, was eine Verzerrung der beiden Koordinationsfiguren CuO4-Quadrat und AsO4-Tetraeder bedingt. Die zwei Na-Atome in Na4Cu(AsO4)3 sind durch O-Atome [6]-koordiniert, das K-Atom in KCu4(AsO4)3 ist [8]-koordiniert.
Zur Kristallchemie dreier Kupfer (II)-Arsenate: Cu3(AsO4)2-III, Na4Cu(AsO4)2 und KCu4(AsO4)3
  相似文献   

5.
A particular pathology of certain W5Si3-type A5B3 structures (I4/mcm) appears to arise because of unduly close approaches of the A1-type atoms on the cell faces at , 0, () that occur with the larger and more electropositive A and/or in the presence of smaller B atoms. A structure refinement of binary Ba4.81Pb3 indicates such a marginal stability in that the Ba atoms in the facial Ba0.81 chains exhibit an extreme displacement ellipsoid along . Although Ca5Sn3 and La5Ga3 binaries are unknown in this structure type, five stable ternary derivatives of these have been synthesized via substitution reactions and characterized by single crystal X-ray diffraction means: Ca4Sn3.223(4)Mg0.777, Ca4Sn3Cu1.30(4), Ca4.66(6)Sn3Zn0.704(4), La4.81(1)Ga1.38(2)Al1.62, and La4.762(5)Ga1.5(1)Zn1.5. Only the Ca-Sn-Zn phase exhibits lower symmetry, P4/mbm. The problematic A1 sites exhibit diverse changes in these, whereas the surrounding B2 tetrahedra are largely unaltered. The Ca-Sn results are, respectively: direct Mg/Sn substitution at the Ca1 site; mixed fractional distribution of the smaller Cu at two sites around the A1 position with an unresolved disorder; a pair of apparently independent modes, fractional Ca in the normal position and fractional Zn rectangles thereabout. The two La-Sn phases contain normal Ga,Al (Ga,Zn) tetrahedral chains with pairs of fractional disordered La atoms along , 0, z. Each can be rationalized in terms of a reasonable incommensurate structure. Electronic effects may also be operable.  相似文献   

6.
The structures of NaRu2O4 and Na2.7Ru4O9 are refined using neutron diffraction. NaRu2O4 is a stoichiometric compound consisting of double chains of edge sharing RuO6 octahedra. Na2.7Ru4O9 is a non-stoichiometric compound with partial occupancy of the Na sublattice. The structure is a mixture of single, double and triple chains of edge-shared RuO6 octahedra. NaRu2O4 displays temperature independent paramagnetism with . Na2.7Ru4O9 is paramagnetic, χ0= with and a Curie constant of 0.0119 emu/mol Oe K. Specific heat measurements reveal a small upturn at low temperatures, similar to the upturn observed in La4Ru6O19. The electronic contribution to the specific heat (γ) for Na2.7Ru4O9 was determined to be15 mJ/moleRu K2.  相似文献   

7.
Crystals of PbCu3(OH)(NO3)(SeO3)3·1/2H2O [a=7.761(3)Å,b=9.478(4)Å,c=9.514(4)Å, =66.94(2)°, =69.83(2)°, =81.83(2)°, space group P ,Z=2] and Pb2Cu3O2(NO3)2(SeO3)2 [a=5.884(2)Å,b=12.186(3)Å,c=19.371(4)Å, space group Cmc21,Z=4] were synthesized under hydrothermal conditions. Their crystal structures were refined with three-dimensional X-ray data toR w=0.033 resp. 0.055. In PbCu3(OH)(NO3)(SeO3)3·1/2H2O the Cu atoms are [4+1] and [4+2] coordinated and via SeO3 groups a three-dimensional atomic arrangement is built up. In Pb2Cu3O2(NO3)2(SeO3)2 there are sheets, which are connected only via Pb-O bonds ranging from 2.98 Å to 3.16 Å.
  相似文献   

8.
LiNi(1/3)Mn(1/3)Co(1/3)O2具有很高的理论比容量,但是三元正极材料在高电压下长循环时,其表面结构发生较大的衰退,导致电池的循环性能和倍率性能变差。本文采用耐高电压且结构稳定的富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2可以有效改善材料的电化学性能。通过XRD、SEM、XPS和TEM等手段对包覆后的材料进行分析,证实了在LiNi(1/3)Mn(1/3)Co(1/3)O2的表面形成了10nm厚的均匀Li4Mn5O(12)的包覆层;在循环100圈后,包覆后的LiNi(1/3)Mn(1/3)Co(1/3)O2仍具有179.5m Ah/g的放电比容量和88.6%容量保持率,明显高于未包覆的LiNi(1/3)Mn(1/3)Co(1/3)O2的78.3%容量保持率。因此,利用富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2为实现更高能量密度的锂离子电池提供了新的途径。  相似文献   

9.
10.
The crystal structures of K2S2O7, KNaS2O7 and Na2S2O7 have been solved and/or refined from X-ray synchrotron powder diffraction data and conventional single-crystal data. K2S2O7: From powder diffraction data, monoclinic C2/c, Z=4, a=12.3653(2), b=7.3122(1), , β=93.0792(7)°, RBragg=0.096. KNaS2O7: From powder diffraction data; triclinic , Z=2, a=5.90476(9), b=7.2008(1), , α=101.7074(9), β=90.6960(7), γ=94.2403(9)°, RBragg=0.075. Na2S2O7: From single-crystal data; triclinic , Z=2, a=6.7702(9), b=6.7975(10), , α=116.779(2), β=96.089(3), γ=84.000(3)°, RF=0.033. The disulphate anions are essentially eclipsed. All three structures can be described as dichromate-like, where the alkali cations coordinate oxygens of the isolated disulphate groups in three-dimensional networks. The K-O and Na-O coordinations were determined from electron density topology and coordination geometry. The three structures have a cation-disulphate chain in common. In K2S2O7 and Na2S2O7 the neighbouring chains are antiparallel, while in KNaS2O7 the chains are parallel. The differences between the K2S2O7 and Na2S2O7 structures, with double-, respectively single-sided chain connections and straight, respectively, corrugated structural layers can be understood in terms of the differences in size and coordinating ability of the cations.  相似文献   

11.
AES depth profiles on ceramic powders (untreated/hydrolyzed/oxidized/ (Al, Y)2O3 coated Si3N4, [BaO, SiO2] coated Al2O3) are feasible on thin, homogeneous layers or m sized agglomerations prepared on an Au foil. By means of the depth profiles one can qualitatively characterize the coating around the particles. Factor analysis of the depth profiles on the differently treated Si3N4 powders suggests the existence of an Si2N2O phase on the oxidized sample.Dedicated to Professor Günther Tölg on the occasion of his 60th birthday  相似文献   

12.
利用二次干燥法和共沉淀法分别制备出了非球形的Ni1/3Co1/3Mn1/3OOH前驱体和球形Ni1/3Co1/3Mn1/3(OH)2前驱体, 并分别和LiNO3混合烧结合成高密度非球形和球形的锂离子正极材料Li(Ni1/3Co1/3Mn1/3)O2. XPS分析表明, 二次干燥法制备的非球形Ni1/3Co1/3Mn1/3OOH前驱体其过渡金属Ni, Co和Mn的价态分别是+2, +3和+4, 而共沉淀法制备的球形Ni1/3Co1/3Mn1/3(OH)2前驱体其各金属价态为+2; X射线衍射分析表明, 非球形的Ni1/3Co1/3Mn1/3OOH前驱体比球形的前驱体具有较高的活性, 能够在低温下合成出Li(Ni1/3Co1/3Mn1/3)O2, 而且制备的产物结晶度高, 具有规整的层状α-NaFeO2结构, 扫描电镜显示制备的非球形产物颗粒均匀, 颗粒间隙小, 振实密度高达2.95 g•cm-3, 远高于球形的振实密度2.35 g•cm-3; 充放电实验表明, 由非球形前驱体制备的Li(Ni1/3Co1/3Mn1/3)O2其充放电性能和循环性能以及体积比容量均高于球形正极材料.  相似文献   

13.
Various Pt catalysts (Pt/ZrO2, Pt/CeO2, Pt/CeZrO, Pt/WO3/ZrO2 and Pt/WO3/CeZrO) were prepared and characterized, and their catalytic reduction reactions of NO by CO, with or without the presence of excess oxygen, were investigated. The results of temperature-programmed experiments showed that CO could be easily oxidized over Pt/CeO2 and Pt/CeZrO while the introduction of WO3 into the catalyst (Pt/WO3/CeZrO) inhibited the reduction of catalyst surface; NO could not dissociate over those catalysts in oxidized state but after CO reduction at a low temperature, NO dissociation took place only over Pt/CeO2 and Pt/CeZrO catalysts. For NO + CO reaction, those easily reduced catalysts Pt/CeO2 and Pt/CeZrO exhibited better catalytic performances, and NO could be rapidly converted below 350 °C. For the reaction with the presence of excess O2, the NO conversions were significantly inhibited, but better NO conversions were obtained over the tungstate-contained catalysts when compared with Pt/CeO2 and Pt/CeZrO. The higher activities of Pt/W–Ce–Zr catalysts were attributed to their high acidities.  相似文献   

14.
The effect of H2S on the activity and selectivity of catalysts (Ru/Al2O3, Pd/Al2O3 and Ru and Pd promoted molydena-alumina) was different (on differnt catalysts and different conversions of cyclohexene). Ru-containing catalysts showed higher sulfur sensitivities than the Pd-containing ones. The sequence of catalysts by their H2S uptake related to mass of catalyst was PdMo/Al2O3RuMo/Al2O3Mo/Al2O3>Pd/Al2O3Ru/Al2O3.  相似文献   

15.
A new Ca6.3Mn3Ga4.4Al1.3O18 compound has been prepared by solid state reaction in a dynamic vacuum of 5×10−6 mbar at 1200 °C. The crystal structure of Ca6.3Mn3Ga4.4Al1.3O18 was studied using X-ray powder diffraction (, SG F432, Z=8, RI=0.031, RP=0.068), electron diffraction and high resolution electron microscopy. The Ca6.3Mn3Ga4.4Al1.3O18 structure can be described as a tetrahedral [(Ga0.59Mn0.24Al0.17)15O30]18.24− framework stabilized with embedded [(Ca0.9Mn0.1)14MnO6]18.24+ polycations, which consists of an isolated MnO6 octahedron surrounded by a capped cube of (Ca0.9Mn0.1) atoms. The Ca6.3Mn3Ga4.4Al1.3O18 structure is related to the structure of Ca7Zn3Al5O17.5, but appears to be significantly disordered due to the presence of two orientations of oxygen tetrahedra around the cationic 0,0,0 and x,x,x () positions in a random way according to the F432 space symmetry. The analogy between the Ca6.3Mn3Ga4.4Al1.3O18 crystal structure and the structure of the “fullerenoid” Sr33Bi24+δAl48O141+3δ/2 oxide is discussed. Ca6.3Mn3Ga4.4Al1.3O18 adopts a Curie-Weiss behavior of χ(T) above with a Weiss temperature and per formula unit. At lower temperatures, the χ(T) deviates from the Curie-Weiss law indicating a strengthening of the ferromagnetic component of the exchange interaction.  相似文献   

16.
All solid state electrochromic devices have potential applications in architectural and automotive fields to regulate the transmission and reflection of radiant energy. We present the optical and electrochemical characteristics of two solid state windows having the configuration glass/ITO/TiO2-CeO2/TiO2/TiO2-CeO2/ITO/glass and glass/ITO/WO3/TiO2/TiO2-CeO2/ITO/glass where the three internal layers have been prepared by sol gel methods. The preparation of the individual sols and some physical properties of the different sol gel coatings are reported.  相似文献   

17.
By means of thermogravimetry (TG) and chemical analysis equilibrium dependencies of oxygen content in GdBa2Cu3O6+x and HoBa2Cu3O6+x on temperature and were studied. It is found that at equal temperature and the oxygen content in RBa2Cu3O6+x increased in order Ho-Y-Gd.On the basis of Fick 2nd law mathematical procedures to determine diffusion coefficients of oxygen from TG data were developed. The oxygen diffusion coefficients in RBa2Cu3O6+x (R=Y, Gd, Ho) were evaluated in a wide temperature (300–900°C) range (at =0.21 bar). The developed model rather satisfactory decribes oxygen diffusion processes in phases under investigation. It is found that for all studied compounds oxygen diffusion in orthorhombic phase happened faster than in tetragonal one. The values of diffusion coefficients increase in order Ho-Y-Gd with increasing of ionic radius of the rare earth element.  相似文献   

18.
Summary Single crystal X-ray data of the hydrothermally grown new phase Li2Cu3(SeO3)2(SeO4)2 were measured with a four-circle diffractometer up to sin /=0.81 Å–1 [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, = 94.21(1)°]. The structure was determined by direct and Fourier methods and refined toR=0.034,R w =0.027 for 2 086 independent reflections.Cu(1)[4+1]O5 forms a tetragonal pyramid, Cu(2)[4 + 2]O6 is a strongly elongated octahedron. The Li atom is surrounded by four O atoms forming a distorted tetrahedron. Se(IV)O3 and Se(VI)O4 groups are in accordance to literature, mean Se-O bond lengths are 1.714 and 1.644 Å.
Die Kristallstruktur von Li2Cu3(SeO3)2(SeO4)2
Zusammenfassung Einkristall-Röntgendaten der hydrothermal gezüchteten neuen Phase Li2Cu3(SeO3)2(SeO4)2 wurden mit einem Vierkreisdiffraktometer im Bereich bis zu sin /=0.81 Å–1 gemessen [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, =94.21(1)°]. Die Kristallstruktur wurde mittels direkter und Fourier-Methoden bestimmt und für 2 086 unabhängige Reflexe zuR=0.034,R w =0.027 verfeinert.Cu(1)[4+1]O5 bildet eine tetragonale Pyramide, Cu(2)[4+2]O6 ist ein stark verlängertes Oktaeder. Das Li-Atom ist von vier O-Atomen in Gestalt eines verzerrten Tetraeders umgeben. Die Se(IV)O3-und Se(VI)O4-Gruppen entsprechen der Literatur, die mittleren Se-O-Abstände betragen 1.714 und 1.644 Å.
  相似文献   

19.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

20.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号