首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The syntheses of the vinyloxycyclotriphosphazene derivatives N3P3X5OCH=CH2 (X = OMe, OCH2CF3) and the N3P3(NMe2)4(OCH=CH2)2 isomeric mixture along with improved preparations of N3P3X5OCH=CH2 (X = F, NMe2) are reported. The interactions between the vinyloxy function and the cyclophosphazene in these and the previously reported N3P3Cl5 (OCH=CH2) and N3P3F6-n(OCH=CH2)n (n = 1-4) have been examined by ultraviolet photoelectron spectroscopy (UPS) and NMR spectroscopy. The UPS data for the chloro and fluoro derivatives show a strong electron-withdrawing effect of the phosphazene on the olefin that is mediated with decreasing halogen substitution. The 1H and 13C NMR data for N3P3X5OCH=CH2 (X = F, Cl, OMe, OCH2CF3, NMe2) show significant changes as a function of the phosphazene substituent. There is a linear correlation between the beta-carbon chemical shift on the vinyloxy unit and the phosphorus chemical shift at the vinyloxyphosphorus centers. The chemical shifts of the different phosphorus centers on each ring are also related in a linear fashion. These relationships may be understood in terms of the relative electron donor-acceptor abilities of the substituents on the phosphazene ring. The 1H NMR spectra of the N3P3(NMe2)4(OCH-CH2)2 isomeric mixture allow for assignment of the relative amounts of cis and trans isomers. A model for the observed cis preference in the formation of N3P3Cl4(OCH=CH)2 is presented.  相似文献   

2.
Reactions of the dilithiated diols RCH2P(S)(CH2OLi)2 [R = Fc (1), Ph (2) (Fc = ferrocenyl)] with N3P3F6 in equimolar ratios at -80 degrees C result exclusively in the formation of two structural isomers of ansa-substituted compounds, endo-RCH2P(S)(CH2O)2[P(F)N]2(F2PN) [R = Fc (3a), Ph (4a)] and exo-RCH2P(S)(CH2O)2[P(F)N]2(F2PN) [R = Fc (3b), Ph (4b)], which are separated by column chromatography. Increasing the reaction temperature to -40 degrees C results in more of the exo isomers 3b and 4b at the expense of the endo isomers. The formation of the ansa-substituted compounds is found to depend on the dilithiation of the diols, as a reaction of the silylated phosphine sulfide FcCH2P(S)(CH2OSiMe3)2 (5) with N3P3F6 in the presence of CsF does not yield either 3a or 3b but instead gives the spiro isomer [FcCH2P(S)(CH2O)2 PN](F2PN)2 (6) as the disubstitution product of N3P3F6. The ansa isomers 3a and 3b are transformed into the spiro compound 6 in the presence of catalytic amounts of CsF at room temperature in THF, while 4a and 4b are transformed into the spiro compound [PhCH2P(S)(CH2O)2PN](F2PN)2 (7) under similar conditions. The novel conversions of ansa-substituted phosphazenes into spirocyclic phosphazenes were monitored by time-dependent 31P NMR spectroscopy. The effect of temperature on a transformation was studied by carrying out reactions at various temperatures in the range from -60 to +33 degrees C for 3b. In addition, compounds 3a, 3b, 4a, and 6 were structurally characterized. In the case of the ansa compounds, the nitrogen atom flanked by the bridging phosphorus sites was found to deviate significantly from the plane defined by the five remaining atoms of the phosphazene ring.  相似文献   

3.
4.
Reaction of phosphazenes derived from aminophosphonates with acetylenic esters leads to conjugated phosphorus ylides. The formation of these stabilized ylides is explained through a [2 + 2] cycloaddition reaction of the P = N linkage of the phosphazene (1,2-addition) and the triple bond of the acetylenic ester followed by ring opening of the azaphosphete intermediate. However, in the case of N-vinylic phosphazenes, the phosphazenes derived from triphenyl- and trimethyl-phosphine react as enamines (1,4-addition) with diacetylenic esters, whereas in phosphazenes derived from trimethylphosphine a 1,2-addition of ethyl propiolate to the P = N linkage of the phosphazene is produced.  相似文献   

5.
The condensation reactions of N2Ox (x = 2, 3) donor-type aminopodand (4) and dibenzo-diaza-crown ethers (5, 6, and 9) with hexachlorocyclotriphosphazatriene, N3P3Cl6, produce two kinds of partially substituted novel phosphazene derivatives, namely, spiro-bino-spiro- (19) and spiro-crypta (21, 22, and 25) phosphazenes. The partially substituted spiro-ansa-spiro-phosphazene (11) reacted with pyrrolidine and 1,4-dioxa-8-azaspiro[4,5]decane (DASD) give the corresponding new fully substituted phosphazenes (14 and 16). Unexpectedly, the reactions of 23 and 24 with pyrrolidine result in only geminal crypta phosphazenes (26 and 27). The solid-state structures of 16 and 22 have been determined by X-ray diffraction techniques. The relative inner hole-size of the macrocycle in the radii of 22 is 1.27 A. The relationship between the exocyclic NPN (alpha') and endocyclic (alpha) bond angles for spiro-crypta phosphazenes and exocyclic OPN (alpha') bond angles for spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes with 31P NMR chemical shifts of NPN and OPN phosphorus atoms, respectively, have been investigated. The structures of 10, 14, 16, 19, 21, 22, and 25-27 have also been examined by FTIR, 1H, 13C, and 31P NMR, HETCOR, MS, and elemental analyses. The 31P NMR spectra of 10, 21, 22, and 25 indicate that the compounds have anisochrony. In compounds 16 and 22, the spirocyclic nitrogen atoms have pyramidal geometries resulting in stereogenic properties.  相似文献   

6.
The reactions of fluorophosphazenes, endo ansa FcCH(2)P(S)(CH(2)O)(2)[P(F)N](2)(F(2)PN) (1) (Fc = ferrocenyl) and spiro [RCH(2)P(S)(CH(2)O)(2)PN](F(2)PN)(2) (R = Fc (2), C(6)H(5) (3)], with dilithiated diols have been explored. The study resulted in the formation of the first examples of ansa-spiro substituted fluorinated cyclophosphazenes as well as a bisansa substituted fluorophosphazene. The bisansa compound [1,3-[FcCH(2)P(S)(CH(2)O)(2)]][1,5-[CH(2)(CH(2)O)(2)]]N(3)P(3)F(2) (4) was found to be nongeminaly substituted with both the ansa rings in cis configuration, which is in stark contrast to the observations on cyclic chlorophosphazenes where geminal bisansa formation has been observed. The ansa-spiro compounds (5-7) underwent the ansa to spiro transformation leading to dispiro compounds in the presence of catalytic amounts of CsF at room temperature. Two of the ansa-spiro compounds, endo-[3,5-[FcCH(2)P(S)(CH(2)O)(2)]][1,1-[CH(2)(CH(2)O)(2)]]N(3)P(3)F(2) (5) and endo-[3,5-[FcCH(2)P(S)(CH(2)O)(2)]][1,1-[FcCH(2)P(S)(CH(2)O)(2)]]N(3)P(3)F(2) (6), were structurally characterized, and the crystal structures indicate boat-chair conformation as well as crown conformation for the eight-membered ansa rings. Weak C-H.F-P interactions observed in the crystal structures of the ansa-spiro substituted fluorophosphazene derivatives have been analyzed and compared with C-H.F-P interactions of other fluorinated phosphazenes and thionyl phosphazenes.  相似文献   

7.
The first solid-state structures of complexed P3N3X6 (X = halogen) are reported for X = Cl. The compounds were obtained from P3N3Cl6 and Ag[Al(OR)4] salts in CH2Cl2/CS2 solution. The very weakly coordinating anion with R = C(CF3)3 led to the salt Ag(P3N3Cl6)2+[Al(OR)4]- (1), but the more strongly coordinating anion with R' = C(CH3)(CF3)2 gave the molecular adduct (P3N3Cl6)AgAl(OR')4 (3). Crystals of [Ag(CH2Cl2)(P3N3Cl6)2]+[Al(OR)4]- (2), in which Ag+ is coordinated by two phosphazene and one CH2Cl2 ligands, were isolated from CH2Cl2 solution. The three compounds were characterized by their X-ray structures, and 1 and 3 also by NMR and vibrational spectroscopy. Solution and solid-state 31P NMR investigations in combination with quantum chemically calculated chemical shifts show that the 31P NMR shifts of free and silver-coordinated P3N3Cl6 differ by less than 3 ppm and indicate a very weakly bound P3N3Cl6 ligand in 1. The experimental silver ion affinity (SIA) of the phosphazene ligand was derived from the solid-state structure of 3. The SIA shows that (PNCl2)3 is only a slightly stronger Lewis base than P4 and CH2Cl2, while other ligands such as S8, P4S3, toluene, and 1,2-Cl2C2H4 are far stronger ligands towards the silver cation. The energetics of the complexes were assessed with inclusion of entropic, thermal, and solvation contributions (MP2/TZVPP, COSMO). The formation of the cations in 1, 2, and 3 was calculated to be exergonic by delta(r)G(degrees)(CH2Cl2) = -97, -107, and -27 kJ mol(-1), respectively. All prepared complexes are thermally stable; formation of P3N3Cl5+ and AgCl was not observed, even at 60 degrees C in an ultrasonic bath. Therefore, the formation of P3N3Cl5+ was investigated by quantum chemical calculations. Other possible reaction pathways that could lead to the successful preparation of P3N3X5+ salts were defined.  相似文献   

8.
The reactions of Me(3)SiN=P(OR")RR'(R" = Ph, CH(2)CF(3); R, R' = Me, Ph) with alcohols were investigated. With nonequivalent amounts of CF(3)CH(2)OH, the reactions produced high yields of the cyclic phosphazene (Me(2)PN)(3) and both the cis and trans isomers of nongeminally substituted [(Ph)(Me)PN](3). The isomers of this new cyclic phosphazene were separated by column chromatography and characterized by NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Crystals of the cis isomer 6a have a monoclinic crystal system, while the trans isomer 6b has a triclinic crystal system with two different molecules in an asymmetric unit. The bond lengths and bond angles are very similar to those of the simpler cyclic trimers (Me(2)PN)(3) and (Ph(2)PN)(3.) A likely pathway for the formation of these compounds is discussed.  相似文献   

9.
To model the Ti-olefin interaction in the putative [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(R')(olefin)(+) intermediates in "constrained geometry" Ti-catalyzed olefin polymerization, chelated alkoxide olefin complexes [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))(+) have been investigated. The reaction of [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(2) (1a,b; R = H, Me) with HOCMe(2)CH(2)CH(2)CH=CH(2) yields mixtures of [eta(5)-C(5)R(4)SiMe(2)NH(t)Bu]TiMe(2)(OCMe(2)CH(2)CH(2)CH=CH(2)) (2a,b) and [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(OCMe(2)CH(2)CH(2)CH=CH(2)) (3a,b). The reaction of 2a/3a and 2b/3b mixtures with B(C(6)F(5))(3) yields the chelated olefin complexes [[eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][MeB(C(6)F(5))(3)] (4a,b; 71 and 89% NMR yield). The reaction of 2b/3b with [Ph(3)C][B(C(6)F(5))(4)] yields [[eta(5): eta(1)-C(5)Me(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][B(C(6)F(5))(4)] (5b, 88% NMR yield). NMR studies establish that 4a,b and 5b exist as mixtures of diastereomers (isomer ratios: 4a/4a', 62/38; 4b/4b', 75/25; 5b/5b', 75/25), which differ in the enantioface of the olefin that is coordinated. NMR data for these d(0) metal olefin complexes show that the olefin coordinates to Ti in an unsymmetrical fashion primarily through C(term) such that the C=C pi bond is polarized with positive charge buildup on C(int). Dynamic NMR studies show that 4b/4b' undergoes olefin face exchange by a dissociative mechanism which is accompanied by fast inversion of configuration at Ti ("O-shift") in the olefin-dissociated intermediate. The activation parameters for the conversion of 4b to 4b' (i.e., 4b/4b' face exchange) are: DeltaH = 17.2(8) kcal/mol; DeltaS = 8(1) eu. 4a/4a' also undergoes olefin face exchange but with a lower barrier (DeltaH = 12.2(9) kcal/mol; DeltaS = -2(3) eu), for the conversion of 4a to 4a'.  相似文献   

10.
The pKa values in water and in dilute surfactant solution for 15 ring-substituted phenyl P1 pyrrolidino phosphazenes PhN=P(NC4H8)3 and the phenyl P1 dimethylamino phosphazene PhN=P(NMe2)3 previously studied in acetonitrile (AN) and tetrahydrofuran (THF) are reported. The nonionic surfactant Tween 20 was used for the basicity measurements of some compounds to overcome the solubility problems. Measurements with a control group of phosphazenes in both media were used to validate the use of the obtained pKa values as estimates of aqueous values. The pK(a) values of the studied phosphazenes in aqueous medium vary from 6.82 (2,6-dinitro-) to 12.00 (4-dimethylamino-). The basicity span is 5.18 pKa units. The aqueous pKa values of the P1 phosphazenes were correlated with the respective basicity data in AN and THF and from these correlations the pK(a) values in water for the parent compounds HN=P(NC4H8)3 and HN=P(NMe2)3 were estimated as 13.9 and 13.3. Also a comparison of the basicity of phosphazenes and some guanidines, amines and pyridines was made. In water the parent phosphazenes and guanidines are the strongest of all the groups of bases studied. In AN and THF the parent phosphazenes are clearly the strongest bases followed by guanidines, amines and pyridines which are bracketed between the basicities of phenyl phosphazenes. In the gas phase the phosphazenes for which data are available are clearly more basic than the other compounds referred to here. Comparison of the basicity data of P1 phosphazenes and some guanidines confirms earlier conclusions about the partly ylidic character of the N=P double bond.  相似文献   

11.
Yam M  Tsang CW  Gates DP 《Inorganic chemistry》2004,43(12):3719-3723
The secondary vinylphosphines Ar(F)P(H)C(R)[double bond]CH(2) [2a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 2b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 2c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)] were prepared by treating the corresponding dichlorophosphine Ar(F)PCl(2) (1) with H(2)C[double bond]C(R)MgBr. In the presence of catalytic base (DBU or DABCO) the vinylphosphines (2a-c) undergo quantitative 1,3-hydrogen migration over 3 d to give stable and isolable phosphaalkenes Ar(F)P=C(R)CH(3) (3a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 3b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 3c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)). Under analogous conditions, only 90% conversion is observed in the base-catalyzed rearrangement of MesP(H)C(CH(3))[double bond]CH(2) to MesP[double bond]C(CH(3))(2). Presumably, the increase in acidity of the P-H group when electron-withdrawing groups are employed (i.e. 2a-c) favors quantitative rearrangement to the phosphaalkene tautomer (3a-c). Thus, the double-bond migration reaction is a convenient and practical method of preparing new phosphaalkenes with C-methyl substituents.  相似文献   

12.
Eleven new phenyl-substituted phosphazenes (P1-, P3-, and P4-bases) have been synthesized by the Staudinger or the Kirsanov reactions. The UV-vis spectrophotometric titration method was used to establish the relative basicity of them, and to extend the ion-pair basicity scale for THF medium. These measurements together with our previous work give a continuous basicity scale in THF ranging from 2.6 (2-MeO-pyridine) to 26.6 (2-Cl-C6H4P4(pyrr) phosphazene) in pKalpha units: that is for 24 orders of magnitude and containing 58 compounds (pyridines, anilines, amines, guanidines, amidines, phosphazenes). Ion-pair formation was taken into account by using the Fuoss equation. DeltapKip values of some phosphazene indicators estimated earlier by the 13C NMR method were revised. For some of the phosphazenes gas-phase basicities were measured.  相似文献   

13.
Seventeen superbasic phosphazenes and two Verkade's bases were used to supplement and extend the experimental gas-phase basicity scale in the superbasic region. For 19 strong bases the gas-phase basicity values (GB) were determined for the first time. Among them are such well-known bases as BEMP (1071.2 kJ/mol), Verkade's Me-substituted base (1083.8 kJ/mol), Et-N=P(NMe2)2-N=P(NMe2)3 (Et-P2 phosphazene, 1106.9 kJ/mol), and t-Bu-N=P(NMe2)3 (t-Bu-P1 phosphazene, 1058.0 kJ/mol). For the first time experimental GB values were determined for P2 phosphazenes. Together with our previous results self-consistent experimental gas-phase basicity scale between 1020 and 1107 kJ/mol is now established. This way an important region of the gas-phase basicity scale, which was earlier dominated by metal hydroxide bases, is now covered also with organic bases making it more accessible for further studies. The GB values for several superbases were calculated using density functional theory at the B3LYP/6-311+G** level. For the phosphazene family the standard deviation of the correlation between the experimental and theoretical values was 6.5 kJ/mol.  相似文献   

14.
The reaction of (C(6)F(5))(2)BH (1) with N,N-dimethylallylamine (2), N,N-diethylallylamine (3) and 1-allylpiperidine (4) afforded the five-membered ring systems (C(6)F(5))(2)B(CH(2))(3)NR(2) (R = Me (5), Et (6)) and (C(6)F(5))(2)B(CH(2))(3)N(CH(2))(5) (7) with an intramolecular dative B-N bond. A different product was obtained from the reaction of (C(6)F(5))(2)BH (1) with N,N-diisopropylallylamine (8), which afforded the seven-membered ring system (C(6)F(5))(2)B(CH(2))(3)N(iPr)CH(Me)CH(2) (9) under extrusion of dihydrogen. All compounds were characterised by elemental analysis, NMR spectroscopy and single-crystal X-ray diffraction experiments. Density functional theory (DFT) studies were performed to rationalise the different reaction mechanism for the formation of products 6 and 9. The bonding situation of compound 9 was analysed in terms of its electron density topology to describe the delocalised nature of a borane-enamine adduct.  相似文献   

15.
Decaborane(14) reacts with 1-(CH(3))(3)SiC&tbd1;CC(4)H(9) in the presence of dimethyl sulfide to give the new alkenyldecaborane 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) (I). Crystal data for 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11): space group P2(1)/n, monoclinic, a = 9.471(1) ?, b = 13.947(3) ?, c = 17.678(3) ?, beta = 100.32(1) degrees. A total of 3366 unique reflections were collected over the range 2.0 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.083; R(w)(F)() = 0.094. The single-crystal X-ray structure of 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) (A) is also reported. Crystal data for 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11): space group, P2(1)2(1)2(1), orthorhombic, a = 9.059 (3) ?, b = 12.193(4) ?, c = 21.431(3) ?. A total of 4836 unique reflections were collected over the range 6 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.052; R(w)(F)() = 0.059. The reactions of 5-(S(CH(3))(2))6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) and 5-(S(CH(3))(2))6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) with a variety of alkyl isocyanides were investigated. All of the alkenyl monocarbon carboranes reported are the result of incorporation of the carbon atom from the isocyanide into the alkenyldecaborane framework and reduction of N&tbd1;C bond to a N-C single bond. The characterization of these compounds is based on (1)H and (11)B NMR data, IR spectroscopy, and mass spectrometry.  相似文献   

16.
Reaction pathways and free energy barriers for alkaline hydrolysis of the highly neurotoxic insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds were studied by performing first-principles electronic structure calculations on representative methylphosphonofluoridates, (RO)CH3P(O)F, in which R = CH2CH2N+(CH3)3, CH3, CH2CH2C(CH3)3, CH2CH2CH(CH3)2, CH(CH3)CH2N+(CH3)3, and CH(CH3)CH2N(CH3)2. The dominant reaction pathway was found to be associated with a transition state in which the attacking nucleophile OH- and the leaving group F- are positioned on opposite sides of the plane formed by the three remaining atoms attached to the phosphorus in order to minimize the electrostatic repulsion between these two groups. The free energy barriers calculated for the rate-determining step of the dominant pathway are 12.5 kcal/mol when R = CH2CH2N+(CH3)3, 15.5 kcal/mol when R = CH3, 17.9 kcal/mol when R = CH2CH2C(CH3)3, 16.5 kcal/mol when R = CH2CH2CH(CH3)2, 13.4 kcal/mol when R = CH(CH3)CH2N+(CH3)3, and 18.7 kcal/mol when R = CH(CH(3))CH(2)N(CH(3))(2). The calculated free energy barriers are in good agreement with available experimentally derived activation free energies, i.e. 14.7 kcal/mol when R = CH(3), 13.4 kcal/mol when R = CH2CH2N+(CH3)3, and 13.9 kcal/mol when R = CH(CH3)CH2N+(CH3)3. A detailed analysis of the calculated energetic results and available experimental data suggests that the net charge of the molecule (M) being hydrolyzed is a prominent factor affecting the free energy barrier (DeltaG) for the alkaline hydrolysis of phosphodiesters, phosphonofluoridates, and related organophosphorus compounds. The electrostatic interactions between the attacking nucleophile OH- and the molecule M being hydrolyzed favor such an order of the free energy barrier: DeltaG(M(+)+OH-) < DeltaG(M0+OH-) < DeltaG(M(-)+OH-), where M+, M0, and M- represent the cationic, neutral, and anionic molecules, respectively. The change of the substituent R in (RO)CH(3)P(O)F from CH3 to CH2CH2N+(CH3)3 is associated with both the electrostatic and steric effects on the free energy barrier, but the electrostatic effect dominates the substituent shift of the free energy barrier. This helps to better understand why the alkaline hydrolysis of (RO)CH3P(O)F with R = CH2CH2N+(CH3)3 and CH(CH3)CH2N+(CH3)3 is significantly faster than that with R = CH3. The effect of electrostatic interaction also helps to understand why the rate constants for the alkaline hydrolysis of phosphodiesters, such as intramolecular second messenger adenosine 3',5'-phosphate (cAMP), are generally smaller than those for the alkaline hydrolysis of the phosphonofluoridates and related phosphotriesters.  相似文献   

17.
The condensation reaction of {N-[(2-hydroxyphenylmethyl)amino]-4,6-dimethylpyridine} (2), which is a reduction product of 1, with trimer N(3)P(3)Cl(6) affords partially a substituted spiro-cyclic phosphazene derivative (3). The fully substituted phosphazenes (4 and 5) have also been obtained from the reactions of 3 with the excess of pyrrolidine and morpholine. The characterizations and spectral investigations of these compounds have been made by elemental analyses, FTIR, 1H-, 13C-, 31P NMR, correlation spectroscopy (COSY), heteronuclear chemical shift correlation (HETCOR), heteronuclear multiple-bond correlation (HMBC) and mass spectroscopy (MS). The salient features of spectral data of these compounds have been discussed.  相似文献   

18.
Alpha-hydrogen abstraction and alpha-hydrogen migration reactions yield novel titanium(IV) complexes bearing terminal phosphinidene ligands. Via an alpha-H migration reaction, the phosphinidene ((tBu)nacnac)Ti=P[Trip](CH(2)(tBu) ((tBu)nacnac(-) = [Ar]NC((t)Bu)CHC((t)Bu)N[Ar], Ar = 2,6-(CHMe2)(2C6H3, Trip = 2,4,6-(i)Pr3C6H2) was prepared by the addition of the primary phosphide LiPH[Trip] to the nucleophilic alkylidene triflato complex ((tBu)nacnac)Ti=CH(t)Bu(OTf), while alpha-H abstraction was promoted by the addition of LiPH[Trip] to the dimethyl triflato precursor ((tBu)nacnac)Ti(CH)(2)(OTf) to afford ((tBu)nacnac)Ti=P[Trip](CH3). Treatment of ((tBu)nacnac)Ti=P[Trip](CH3) with B(C6F5)(3) induces methide abstraction concurrent with formation of the first titanium(IV) phosphinidene zwitterion complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5)(3)}. Complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5)(3)} [2 + 2] cycloadds readily PhCCPh to afford the phosphametallacyclobutene [((tBu)nacnac)Ti(P[Trip]PhCCPh)][CH3B(C6F5)(3)]. These titanium(IV) phosphinidene complexes possess the shortest Ti=P bonds reported, have linear phosphinidene groups, and reveal significantly upfielded solution 31P NMR spectroscopic resonances for the phosphinidene phosphorus. Solid state 31P NMR spectroscopic data also corroborate with all three complexes possessing considerably shielded chemical shifts for the linear and terminal phosphinidene functionality. In addition, high-level DFT studies on the phosphinidenes suggest the terminal phosphinidene linkage to be stabilized via a pseudo Ti[triple bond]P bond. Linearity about the Ti-P-C(ipso) linkage is highly dependent on the sterically encumbering substituents protecting the phosphinidene. Complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5))(3)} can catalyze the hydrophosphination of PhCCPh with H(2)PPh to produce the secondary vinylphosphine HP[Ph]PhC=CHPh. In addition, we demonstrate that this zwitterion is a powerful phospha-Staudinger reagent and can therefore act as a carboamination precatalyst of diphenylacetylene with aldimines.  相似文献   

19.
The preparation of a large series of new N-silyl-P-alkylphosphoranimines and their (silylamino)phosphine precursors is reported. Oxidative bromination of the P-functional (silylamino)phosphines, (Me(3)Si)(2)NP(R)X [R = n-Pr, n-Bu, i-Pr, t-Bu; X = Br, OR' (R' = CH(2)CF(3), Ph)], occurred smoothly at 0 degrees C and afforded the desired P-bromophosphoranimines, Me(3)SiN=P(R)(X)Br. Nucleophilic substitution reactions of the P-dibromo members of this series with LiOR' gave the corresponding P-trifluoroethoxy- and P-phenoxyphosphoranimines, Me(3)SiN=P(R)(OR')(2) (R' = CH(2)CF(3), Ph). All of these N-silylphosphoranimines, which are potential precursors to new cyclic and/or polymeric phosphazenes, were obtained as thermally stable, distillable liquids and were characterized by NMR ((1)H, (13)C, and (31)P) spectroscopy and elemental analysis.  相似文献   

20.
吴琼洁  刘世雄 《结构化学》2004,23(10):1177-1182
本文合成了含水杨醛缩对硝基苯甲酰腙(简写为H2L)的钒酰配合物VOL(CH3OH)(CH3O)(1,C16H16N3O7V,Mr=413.26)和钴配合物[CoL(C5H5N)3]NO3C5H5N(2,C34H29N8O7Co,Mr=720.58)。配合物1属单斜晶系,空间群为P21/c,a=7.3253(3),b=18.8237(9),c=12.9014(5)?b=91.672(1),V=1778.2(1)3,Z=4,F(000)=848,m(MoKa)=0.603mm1,R=0.0470,wR=0.1312。配合物2属单斜晶系,空间群为P21/c,a=11.4196(8),b=17.157(1),c=17.081(1)?b=96.8233(9),V=3323.0(4)3,Z=4,F(000)=1488,m(MoKa)=0.578mm1,R=0.0455,wR=0.1311。在配合物1中,钒(V)原子由周围的酰氧基原子、配体L2的3个配位原子,去质子化甲醇的甲氧基原子和配位甲醇的氧原子配位,形成畸变的VO(ONO)(O)(O)八面体配位构型。晶体内每2个分子间通过氢键作用缔合成中心对称的分子对,OH…N氢键键长为2.861(4)?键角163.20。晶体中存在着弱p-p共轭作用。在配合物2中,钴(Ⅲ)原子由1个L2的3个配位原子和3个配位吡啶分子的3个氮原子配位,呈N4O2八面体配位构型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号