首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinetic investigation of the alternating copolymerization of butadiene and methyl methacrylate with the use of a system of ethylaluminum dichloride and vanadyl chloride as a catalyst was undertaken. The relation between the polymer yield and the molar fraction of methyl methacrylate in the feed was examined by continuous variation of butadiene and methyl methacrylate, the concentrations of total monomer, ethylaluminum dichloride, and vanadyl chloride being kept constant. This continuous variation method revealed that the polymer yield attains its maximum value with a monomer feed containing less than the 0.5 molar fraction of methyl methacrylate. This value of the molar fraction of methyl methacrylate affording the maximum polymer yield decreased on increasing the total monomer concentration but was not changed on varying the concentration of ethylaluminum dichloride. The number of active species estimated from the relation between yield and molecular weight of the polymer was almost constant, regardless of the molar fraction of methyl methacrylate in the feed. Consequently, it can be said that the maximum polymer yield depends mainly on the propagation reaction, not on the initiation reaction or the termination reaction. Three types of the mechanism have been discussed for this alternating copolymerization: polymerization via alternating addition of butadiene and methyl methacrylate complexed with ethylaluminum dichloride by the Lewis-Mayo scheme; polymerization via the ternary intermediate of butadiene, methyl methacrylate, and ethylaluminum dichloride; polymerization via the complex formation of butadiene and methyl methacrylate complexed with ethylaluminum dichloride occurring only at the growing polymer radical. From the kinetic results obtained, it was shown that the first and third schemes are excluded, and polymerization by way of the ternary intermediate is compatible with the data.  相似文献   

2.
Abstract

Block polymerization of methyl methacrylate initiated with monohalo-terminated polystyrene/manganese carbonyl systems were investigated. The rate of polymerization was lower than that of the trihalo-terminated polystyrenelmanganese carbonyl system. The molecular weight of the block copolymers obtained was independent of the conversion. To define the polymerization mechanism, 1-bromobutane was employed as a model compound for monohalo-terminated polystyrene. Polymerization kinetics followed a modified rate equation based on the Michaelis-Menten mechanism. The molecular weight of the block co-polymer could be regulated by varying the ratio of monohalo-terminated polymer to methyl methacrylate. Graft polymerization of methyl methacrylate initiated with chloromethylstyrene-styrene copolymer/ manganese carbonyl was also carried out. The polymerization behavior was strongly affected by the concentration of manganese carbonyl. Characterization of graft copolymers by GPC and halogen analysis showed that the number of grafting points per backbone polymer molecule increased when the concentration of manganese carbonyl was raised, but that the branches became shorter.  相似文献   

3.
The polymerization of vinyl monomers initiated by binary initiator systems composed of a copper–amine complex type resin and organic halides has been studied. These binary systems initiated the polymerization of various vinyl monomers. A kinetic study of the polymerization of methyl methacrylate initiated by the copper–amine complex resin–CCl4 system was carried out, and it was found that the polymerization proceeds by way of a radical mechanism. This fact was also supported by the copolymerization of methyl methacrylate with styrene. The overall activation energy of the polymerization of methyl methacrylate was estimated as 8.4 kcal/mole. The activity of the initiator systems was greatly dependent upon the dissociation energy of carbon–halogen bonds in the organic halides. A possible initiation mechanism with the binary systems is proposed and discussed.  相似文献   

4.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

5.
The cationic bridged zirconocene complex [iPr(Cp)(Ind)Zr(Me)(THF)][BPh4] ( 1 ‐BPh4) was synthesized. Polymerization of methyl methacrylate with 1 ‐BPh4 in CH2Cl2 at temperatures between –20 and 20°C led to the formation of isotactic poly(methyl methacrylate). The low polydispersity index of the polymer obtained and a successful two step polymerization of methyl methacrylate with 1 ‐BPh4 are hints towards a living polymerization mechanism. 1H and 13C NMR analysis revealed an enantiomorphic site‐controlled mechanism for the formation of isotactic poly(methyl methacrylate).  相似文献   

6.
Methyl methacrylate and p-fluorostyrene were polymerized with manganese (III) acetylacetonate–aluminum triethyl catalyst at 60°C in a benzene medium. Maximum activity was found at Al/Mn ratio of 4. Maximum percent conversion of polymer was obtained when the aging time of the catalyst was 10 min. The rate of polymerization was first order with respect to monomer. The rate of polymerization with respect to catalyst and cocatalyst were found to be 0.5 and 1.5, respectively. The overall energy of activation for the polymerization of methyl methacrylate and p-fluorostyrene were found to be 52.6 and 57.0 kJ/mole, respectively. A free-radical mechanism is postulated.  相似文献   

7.
Silver/carbon nanoparticles (9 nm) were incorporated, as reinforcements, into a matrix of poly(methyl methacrylate) via in situ miniemulsion polymerization. It was found by differential scanning calorimetry that the glass‐transition temperature of the poly(methyl methacrylate) showed an improvement of 14 °C with only 0.5 wt % nanoparticles in comparison with a pure poly(methyl methacrylate) control, which was also obtained by miniemulsion polymerization under the same conditions. This increase was related to a polymer chain mobility restriction due to a combination of bound plastic and joint plastic shell effects at the interphase and the surrounding regions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 511–518, 2007.  相似文献   

8.
A viscometric determination of the degree of branching γ, of poly(methyl methacrylate) obtained by anionic polymerization proved the reaction of the growing center of poly(methyl methacrylate) with the ester group of another polymer molecule, accompanied by the formation of a trifunctional branch point. This reaction occurs if the solution polymerization of methyl methacrylate is initiated: (1) with butyllithium at ?78°C only on attaining 100% conversion and after a long time or at +20°C immediately after the polymerization has set in; (2) with lithium tert-butoxide at +20°C after a long time. The degree of branching of poly(methyl methacrylates) obtained under similar conditions in the presence of tetrahydrofuran reaches higher values than for polymers prepared in toluene. The tacticity of polymers does not affect the experimentally determined γ values.  相似文献   

9.
The growth center in the anionic polymerization of methacrylic esters is stabilized with alkaline alkoxides, sodium tert-butoxide in particular. The lifetime of the growth center was investigated in the polymerization of methyl methacrylate by evaluating yield and molecular weight distribution of the polymer formed when the monomer was added in two doses. The average lifetime of the original growth center stabilized by sodium tert-butoxide at 20°C under the given conditions was longer than several minutes. The stabilization of the growth center was also used in the stepwise copolymerization of n-butyl methacrylate and methyl methacrylate. The copolymer thus obtained in high yield was characterized as a block copolymer on the basis of its solubility, nuclear magnetic resonance (NMR) spectra, and measurements of the complex shear modulus.  相似文献   

10.
A series of random copolymers, composed of 1H,1H‐perfluorooctyl methacrylate (FOMA) and 2‐dimethylaminoethyl methacrylate (DMAEMA) were prepared as stabilizers for the dispersion polymerization of methyl methacrylate in supercritical CO2 (scCO2). Free‐flowing, spherical poly(methyl methacrylate) (PMMA) particles were produced in high yield by the effective stabilization of poly(FOMA‐co‐DMAEMA) containing 34–67 w/w % (15–41 m/m %) FOMA structural units. Less stabilized but micron‐sized discrete particles could be obtained even with 25 w/w % (10 m/m %) FOMA stabilizer. The result showed that the composition of copolymeric stabilizers had a dramatic effect on the size and morphology of PMMA. The particle size was controllable with the surfactant concentration. The effect of the monomer concentration and the initial pressure on the polymerization was also investigated. The dry polymer powder obtained from dispersion polymerization could be redispersed to form stable aqueous latexes in an acidic buffered solution (pH = 2.1) by an electrostatic stabilization mechanism due to the ionization of DMAEMA units in the stabilizer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1365–1375, 2008  相似文献   

11.
Summary: The preparation of polystyrene block methyl methacrylate copolymers (PS-b-PMMA) is described. The polystyrene segment was prepared by anionic polymerization and the methylmethacrylate segment was prepared via free radical autoxidation of a borane agent attached to the styrene chain. 1 The chemistry involves a transformation of the anionic polymerization process to borane chemistry by firstly producing polystyrene with chain end unsaturated alkyl functional groups prepared using a n-butyllithium initiator and termination with allylchlorodimethylsilane. Secondly, the unsaturated macroinitiator end was hydroborated by 9-borabicyclo[3.3.1]nonane (9-BBN) to produce a borane terminated PS. Thirdly, the borane group at the chain end was selectively oxidized and converted to polymeric radicals in the presence of methyl methacrylate which then initiated radical polymerization to produce block copolymers. The polymer obtained was characterized using several chromatographic techniques including LC-CC (liquid chromatography under critical conditions) for the polystyrene segments and two-dimensional chromatography with LC-CC in the first dimension and SEC in the second. The results show that block formation was successful although significant homopolymerization of methyl methacrylate is also obtained.  相似文献   

12.
Polymerization of methyl methacrylate was studied with a cobalt acetylacetonate-diethyl zinc catalyst initiator system in benzene medium at 40°C. When the stoichiometric ratio of Zn/Co is 2, the activity for polymerization is found to be maximum. The structure of the obtained polymethyl methacrylate is compared with that obtained using a free-radical initiator such as benzoyl peroxide. The structure of polymer and the M?w/M?n values indicate that cobalt acetylacetonate-zinc diethyl system has pronounced free-radical characteristics. A suitable mechanism is proposed from the kinetic studies. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Kinetics of the polymerization of methyl methacrylate with the VOCl3? AlEt3 catalyst system at 40°C in n-hexane have been studied. A linear dependence of rate of polymerization on the monomer and catalyst concentrations as well as an overall activation energy of 5.87 kcal/mole were found. Characterization of the structure of the polymer by NMR spectra revealed the presence of stereoblock units. The mechanism of polymerization is discussed in relation to the kinetic data obtained.  相似文献   

14.
In virtue of the reversible coupling and cleaving mechanism involved isopropylthioxanthone (ITX), a precursor of poly(methyl methacrylate) ended with ITX residues (PMMA-ITXH) was firstly synthesized through the photopolymerization of methyl methacrylate (MMA) initiated by a binary system of ITX and ethyl-p-dimethyl amino benzoate (EDAB), and secondly, applying this precursor as a macroinitiator, block copolymer of poly(methyl methacrylate) and polystyrene (PMMA-b-PSt) was produced through a thermal activated radical polymerization of styrene (St) at a temperature above 80°C. The content of incorporation of the reduced ITX groups in the precursor was estimated by UV-vis spectrum analysis and the results indicated that it was greatly influenced by the ITX concentration in system. The presence of EDAB could promote the polymerization and result in high monomer conversions and low molecular weight of polymers with wide distributions, but had no evident effect on the incorporation of reduced ITX moieties in polymer. Furthermore, more monomer supplied in system was advantageous for the production of high molecular weight of polymers and provided apparently low content of reduced ITX residues in polymer. Using a selected precursor of PMMA-ITXH with a moderate level of reduced ITX residues, molecular weight and its distribution, the bulk polymerization of St was initiated. FTIR spectrum analysis and GPC measurement confirmed the formation of block copolymer of PMMA-b-PSt.  相似文献   

15.
The kinetics of the polymerization of methyl methacrylate initiated by lithium alkyls (tert-butyllithium or ethyl α-lithiobutyrate) was investigated in the presence of aluminium alkyls (triethylaluminium or triisobutylaluminium) in toluene at −78°C. The rate of polymerization decreases considerably once the living dimer is formed. This suggests that the aluminate end-group coordinates with the penultimate ester group of the polymer chain, thus decreasing reactivity. The results are at variance with an activated monomer mechanism.  相似文献   

16.
In situ Fourier transform near infrared (FTNIR) spectroscopy was successfully used to monitor monomer conversion during copper mediated living radical polymerization with N‐(n‐propyl)‐2‐pyridylmethanimine as a ligand. The conversion of vinyl protons in methacrylic monomers (methyl methacrylate, butyl methacrylate, and N‐hydroxysuccinimide methacrylate) to methylene protons in the polymer was monitored with an inert fiber‐optic probe. The monitoring of a poly(butyl methacrylate‐b‐methyl methacrylate‐b‐butyl methacrylate) triblock copolymer has also been reported with difunctional poly(methyl methacrylate) as a macroinitiator. In all cases FTNIR results correlated excellently with those obtained by 1H NMR. On‐line near infrared (NIR) measurement was found to be more accurate because it provided many more data points and avoided sampling during the polymerization reaction. It also allowed the determination of kinetic parameters with, for example, the calculation of an apparent first‐order rate constant. All the results suggest that FTNIR spectroscopy is a valuable tool to assess kinetic data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4933–4940, 2004  相似文献   

17.
Polymerization of methyl methacrylate has been studied with the chromium acetylacetonate–triisobutyl aluminum catalyst system in benzene medium at 40°C. These studies have been carried out at an Al/Cr ratio of 12 to compare the behavior with the previously studied chromium acetyl acetonate–triethyl aluminum catalyst system. The enhanced yield and gelling of polymer suggests a free-radical mechanism of polymerization. Further, the kinetics of polymerization and the heterotactic structure of polymer as determined by NMR examination have led to confirmation of the freeradical mechanism of polymerization of methyl methacrylate by an excess of triisobutylaluminum in the presence of catalyst complex.  相似文献   

18.
The bulk polymerization of methyl methacrylate (MMA) initiated with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS) was studied. This polymerization showed some “living” characteristics; that is, both the yield and the molecular weight of the resulting polymers increased with reaction time, and the resultant polymer can be extended by adding MMA. The molecular weight distribution of PMMA obtained at high conversion is fairly narrow (Mw/Mn = 1.24≈1.34). It was confirmed that DCDPS can serve as a thermal iniferter for MMA polymerization by a “living” radical mechanism. Furthermore, the PMMA obtained can act as a macroinitiator for radical polymerization of styrene (St) to give a block copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4610–4615, 1999  相似文献   

19.
The polymerization of methyl methacrylate initiated by Ce4+ methanol redox system was studied in aqueous solution of nitric acid at 15°C. The polymerization was initiated by primary radicals formed from Ce4+/alcohol complex. Poly(methyl methacrylate) chains containing the alcohol residue were obtained. Variations in the temperatuare and concentration of the components of the redox system allowed the control of the rate of polymerization and molecular weight of the polymer. The concentration of the hydroxyl end groups in the poly(methyl methacrylate) of low molecular weight was determined by titration and by spectrometric method.  相似文献   

20.
The anionic polymerization of allyl methacrylate was carried out in tetrahydrofuran, both in the presence and in the absence of LiCl, with a variety of initiators, at various temperatures. It was found that (1,1-diphenylhexyl)lithium and the living oligomers of methyl methacrylate and tert-butyl methacrylate are suitable initiators for the anionic polymerization of this monomer. The temperature should be below −30°C, even in the presence of LiCl, for the living polymerization to occur. When the polymerization proceeded at −60°C, in the presence of LiCl, with (1,1-diphenylhexyl)-lithium as initiator, the number-average molecular weight of the polymer was directly proportional to the monomer conversion and monodisperse poly(allyl methacrylate)s with high molecular weights were obtained. 1H-NMR and FT-IR indicated that the α CC double bond of the monomer was selectively polymerized and that the allyl group remained unreacted. The prepared poly(allyl methacrylate) is a functional polymer since it contains a reactive CC double bond on each repeating unit. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2901–2906, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号