首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

2.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. Taguchi method was used to find the optimal deposition parameters including oxygen partial pressure, argon partial pressure, substrate temperature, and sputtering power. By employing the analysis of variance, we found that the oxygen and argon partial pressures were the most influencing parameters on the electrical properties of ZnO:Ga films. Under the optimized deposition conditions, the ZnO:Ga films showed acceptable crystal quality, lowest electrical resistivity of 2.61 × 10−4 Ω cm, and high transmittance of 90% in the visible region.  相似文献   

3.
Structural and photoluminescent properties of TiN thin films deposited by dc reactive magnetron sputtering are studied. It is found that TiN thin films are polycrystalline with a grain size of ~15 nm and have a NaCl-type cubic crystal structure with a lattice constant of 0.42 nm. The TiN films under study exhibit photoluminescence in the spectral range h ν ≈ 2.1–3.4 eV at 300 K.  相似文献   

4.
In this study, porous silicon (PS) templates were formed by electrochemical anodization on p-type (100) silicon wafer and ZnO films were deposited on PS substrates using radio frequency (RF) reactive magnetron sputtering technique. The effects of oxygen partial pressures of growth ZnO films and annealing ambience on the microstructure and photoluminescence (PL) of the ZnO/PS nanocomposite films were systematically investigated by X-ray diffraction and fluorescence spectrophotometry. The results indicated that all ZnO/PS nanocomposite films were polycrystalline in nature with a hexagonal wurtzite structure and the (002) oriented ZnO films had the best crystal quality under O2:Ar ratio of 10:10 sccm and annealing in vacuum. PL measurements at room temperature revealed that ZnO/PS nanocomposite systems formed a broad PL band including the blue and green emissions from ZnO and red-orange emission from the PS. The mechanism and interpretation of broadband PL of the nanocomposites were discussed in detail using an oxygen-bonding model in PS and a native defects model in ZnO.  相似文献   

5.
A series of ZnO films with TiO2 buffer on Si (1 0 0) substrates were prepared by DC reactive sputtering. Growth temperature of TiO2 buffer changed from 100 °C to 400 °C, and the influence on the crystal structures and optical properties of ZnO films have been investigated. The XRD results show that the ZnO films with TiO2 buffer have a hexagonal wurtzite structure with random orientation, and with the increase of growth temperature of TiO2 buffer, the residual stresses were released gradually. Specially, the UV emission enhanced distinctly and FWHMs (full width half maximum) decreased linearly with the increasing TiO2 growth temperature. The results all come from the improvement of crystal quality of ZnO films.  相似文献   

6.
Al-N codoped p-type ZnO thin films have been prepared by DC magnetron reactive sputtering reproducibly using a high-temperature (HT) homo-buffer layer. The influence of HT buffer layer deposition time (Tht) on film properties was investigated by X-ray diffraction (XRD), scanning electron micro-spectra (SEM) and Hall measurement. The Al-N codoped ZnO film was improved evidently in its crystal quality by varying the value of Tht. Results of Hall effect showed that all of the Al-N codoped ZnO thin films were p-type conduction and had resistivity mainly below 50 Ω cm. The optimum deposition time of HT buffer layer is around 3 min from the comprehensive consideration of structural, electrical, and optical properties. The obtained ZnO thin film can meet the need of application in optoelectronic devices based on ZnO.  相似文献   

7.
The effect of inert gas additive (He, Ar, Xe) to CH4/H2 discharges for dry etching of single crystal ZnO was examined. The etch rates were higher with Ar or Xe addition, compared to He but in all cases the CH4/H2-based mixtures showed little or no enhancement over pure physical sputtering under the same conditions. The etched surface morphologies were smooth, independent of the inert gas additive species and the Zn/O ratio in the near-surface region decreases as the mass number of the additive species increases, suggesting preferential sputtering of O. The plasma etching improved the band-edge photoluminescence intensity from the ZnO for the range of ion energies used here (290-355 eV), due possibly to removal of surface contamination layer.  相似文献   

8.
Zinc oxide films with c-axis preferred orientation were deposited on silicon (100) substrates by radio frequency (RF) reactive sputtering. The properties of the sam- ples were characterized by X-ray diffractometer, X-ray photoelectron spectroscopy and fluorescent-spectrophotometer. The effect of sputtering power and substrate temperature on the structural and photoluminescent (PL) properties of the ZnO films was investigated. The results indicated that when the sputtering power is 100 W and the substrate temperature is 300-400℃, it is suitable for the growth of high c-axis orientation and small strain ZnO films. A violet peak at about 380 nm and a blue band at about 430 nm were observed in the room temperature photolumines- cence spectra, and the origin of blue emission was investigated.  相似文献   

9.
Cu-doped zinc oxide (ZnO:Cu) films were deposited on p-Si (1 0 0) substrates at 200 °C under various oxygen partial pressures by using radio frequency reactive magnetron sputtering. The properties of the films were characterized by the X-ray diffraction spectroscopy (XRD), energy dispersive spectrometer, X-ray photoelectron spectroscopy (XPS) and fluorescence spectrophotometer with the emphasis on the evolution of microstructures, element composition, valence state of Cu, optical properties. The results indicated that the properties of ZnO:Cu films were significantly affected by oxygen partial pressures. XRD measurements revealed that the sample prepared at the ratio of O2:Ar of 15:10 sccm had the best crystal quality among all ZnO:Cu films. XPS analysis results suggested that the valence of Cu in the ZnO films was a mixed state of +1 and +2, and the integrated intensity ratio of Cu2+ to Cu+ increased with the increment of oxygen partial pressure. The photoluminescence measurements at room temperature revealed a violet, two blue and a green emission. We considered that the origin of green emission came from various oxygen defects when the ZnO:Cu films grew in oxygen poor and enriched environment. Furthermore, the influence of annealing atmosphere on the microstructures and optical properties of ZnO:Cu films were discussed.  相似文献   

10.
潘峰  郭颖  成枫锋  法涛  姚淑德 《中国物理 B》2011,20(12):127501-127501
Fe ions of dose 8 × 1016 cm-2 are implanted into a ZnO single crystal at 180 keV. Annealing at 1073 K leads to the formation of zinc ferrite (ZnFe2O4), which is verified by synchrotron radiation X-ray diffraction (SR-XRD) and X-ray photoelectron spectroscopy (XPS). The crystallographically oriented ZnFe2O4 is formed inside the ZnO with the orientation relationship of ZnFe2O4 (111)//ZnO (0001). Superconducting quantum interference device (SQUID) measurements show that the as-implanted and post-annealing samples are both ferromagnetic at 5 K. The synthesized ZnFe2O4 is superparamagnetic, with a blocking temperature (TB = 25 K), indicated by zero field cooling and field cooling (ZFC/FC) measurements.  相似文献   

11.
The effect of ZnO under layers on crystal growth of TiN thin films was investigated. TiN single layers and double-layered ZnO/TiN thin films were deposited on soda-lime-silicate glass substrates by magnetron sputtering. XRD analysis indicated that TiN single layers exhibited {1 1 1} preferred orientation on glass substrates; on the other hand, the TiN thin films with {1 0 0} preferred orientation were obtained using ZnO under layers and crystallized better than the TiN single layers. This crystal orientation change of TiN thin films should come from heteroepitaxial-like growth because the TiN{1 0 0} and ZnO{0 0 1} crystal lattice planes have similar atomic arrangements. Besides, the possible mismatch between TiN and ZnO atomic arrangements was estimated to be 7.8%. Furthermore, the resistivity and optical absorbance of TiN thin films decreased when they were deposited on ZnO under layers. It can be considered that electrical and optical properties should be improved due to the well-crystallization of TiN thin films using ZnO under layers.  相似文献   

12.
A novel combination of methods is shown to produce semiconducting WS2 thin films with properties close to those of a single crystal. The first step requires the deposition of a very thin Ni layer on a quartz substrate. On top of it an amorphous, sulphur rich, (WS3 +x ) thin film is deposited by reactive rf sputtering. The final annealing step in an argon atmosphere yields 200 nm thick WS2 films. X-ray diffraction shows that the films crystallize in the 2H-WS2 phase and are perfectly oriented with the (002) basal planes parallel to the substrate. Residual W18O49 needles and-NiS grains are detected by transmission electron microscopy. The dc conductivity and its activation energy have values typical of bulk crystals. The optical absorption spectrum measured at Room Temperature (RT) shows excitonic peaks at the same energies as in a single crystal. RT photoconductivity measured as a function of wavelength is shown to result from interband transitions.  相似文献   

13.
谭永胜  方泽波  陈伟  何丕模 《中国物理 B》2010,19(9):97502-097502
This paper reports that Eu-doped ZnO films were successfully deposited on silicon (100) by radio-frequency magnetic sputtering. The x-ray diffraction patterns indicate that Eu substitutes for Zn in the lattice. Ferromagnetic loops were obtained by using superconducting quantum interference device at 10 K and room temperature. No discontinuous change was found in both of the zero-field-cooled and field-cooled curves. The observed ferromagnetism in Eu-doped ZnO can be attributed to a single magnetic phase. The saturation magnetisation decreased remarkably for the Eu-doped ZnO prepared by introducing 5% of oxygen in the sputtering gas or by the post annealing in O2, suggesting that the defects play key roles in the development of ferromagnetism in Eu-doped ZnO films.  相似文献   

14.
利用直流反应溅射方法在p型Si衬底上生长掺Al的n型ZnO薄膜,测量了由n型ZnO薄膜和p型Si衬底组成的异质结在黑暗和光照条件下的I-V特性,结果表明该异质结具有优良的整流特性,而且在光照条件下的反向电流迅速增大并很快趋于饱和.通过测量ZnO薄膜的光电流和异质结的光电压的光谱响应,初步分析了异质结的光电转换机理.测量结果显示,在入射光波长为380nm时光电流强度明显下降,反映出光电流与ZnO薄膜禁带宽度的密切关系;同时还发现,在与ZnO禁带宽度相对应的波长前后所产生的光生电压方向相反.推测这一现象与异质结的能带结构密切相关. 关键词: ZnO薄膜 异质结 光电转换 光谱响应  相似文献   

15.
Undoped and Ti-doped ZnO films were deposited using radio frequency reactive magnetron sputtering at various sputtering powers. The crystal structures, surface morphology, chemical state and optical properties in Ti-doped ZnO films were systematically investigated via X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible (UV–Vis) spectrophotometer. Results indicated that titanium atoms may replace zinc atomic sites substitutionally or incorporate interstitially in the hexagonal lattices, and a moderate quantity of Ti atoms exist in the form of sharing the oxygen with Zn atoms and hence improve the (0 0 2) orientation. The photoluminescence (PL) spectra of the Ti-doped ZnO films contain one main blue peak, whose intensity increased with the increase of sputtering power. Our results indicated that a higher compressive stress in Ti-doped ZnO films results in a lower optical band gap and a lower transmittance, and various Ti impurities can affect the concentration of the interstitial Zn and O vacancies.  相似文献   

16.
In this Letter, we report the successful growth of high quality c ‐plane oriented epitaxial ZnO films on a ‐plane sapphire substrates by using radio frequency reactive magnetron sputtering. The effect of substrate temperature on the structural and optical properties has been investigated. X‐ray diffraction (XRD) studies reveal that the ZnO film is grown epitaxially on a ‐plane sapphire substrate, and the film quality is improv‐ ed as the substrate temperature is increased. Photoluminescence (PL) results manifest that screw dislocations can exert great influence on the optical properties. It is found that the line width of the near‐band‐edge emission of PL decreases linearly with increase in screw density. In addition, a simple and effective method is proposed to assess the defect density in epitaxial ZnO films by performing PL measurement. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We show that the technique of pulsed laser sputtering of metallic manganese in a flow of hydrides (arsine or phosphine) allows the deposition of half-metallic MnB 5 compound layers on GaAs (100) substrates. The crystal structure, magneto-optical, and galvanomagnetic properties of the layers are determined by synthesis conditions, mainly by substrate temperature. It is established that the MnAs and MnP layers are ferromagnetic at temperatures up to 300 K.  相似文献   

18.
Zinc oxide films were prepared by rf magnetron sputtering on glass substrates with designed ZnO target using high-purity of zinc oxide (99.99%) powder. Systematic study on dependence of target-to-substrate distance (Dts) on structural, electrical and optical properties of the as-grown ZnO films was mainly investigated in this work. XRD showed that highly preferred ZnO crystal in the [0 0 1] direction was grown in parallel to the substrate, while the Dts did not effect to the peak position of XRD. With decreasing Dts, the growth rate is increased while the electrical resistivity as well as crystal size in the ZnO films was decreased. The XPS data showed that the O/Zn ratio in ZnO films was increased with increasing Dts in the films. The as-grown ZnO films have an average transmittance of above 85% at the visible region. The optical band gap of the as-grown ZnO films was changed from 3.18 to 3.36 eV with Dts. With decreasing Dts, the electrical resistivity was decreased, while the growth rate was increased.A bilayer is used as an anode electrode for organic electroluminescent devices. The bilayer consists of an ultrathin ZnO layer adjacent to a hole-transporting layer and an Indium tin oxide (ITO) outerlayer. We tried to bring low the barrier between the devices as deposited ZnO films on ITO substrates. We fabricated the organic EL structure consisted of Al as a cathode, Al2O3 as an electro transport layer, Alq3 as a luminously layer, TPD as a hole transport layer and ZnO (1 nm)/ITO (150 nm) as an anode. The result of this experiment was not good compared with the case of using ITO, nevertheless, at this structure we obtained the lowest turn-on voltage as the value of 19 V and the good brightness (6200 cd/m2) of the emission light from the devices. Then the quantum efficiency was to be 1.0%.  相似文献   

19.
朱亚彬  胡伟  纳杰  何帆  周岳亮  陈聪 《中国物理 B》2011,20(4):47301-047301
Polycrystalline ZnO and ITO films on SiO2 substrates are prepared by radio frequency (RF) reactive magnetron sputtering. Schottky contacts are fabricated on ZnO films by spin coating with a high conducting polymer, poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) as the metal electrodes. The current-voltage measurements for samples on unannealed ZnO films exhibit rectifying behaviours with a barrier height of 0.72 eV (n=1.93). The current for the sample is improved by two orders of magnitude at 1 V after annealing ZnO film at 850 ℃, whose barrier height is 0.75 eV with an ideality factor of 1.12. X-ray diffraction, atomic force microscopy and scanning electron microscopy are used to study the properties of the PEDOT:PSS/ZnO/ITO/SiO2. The results are useful for applications such as metal-semiconductor field-effect transistors and UV photodetectors.  相似文献   

20.
B-N codoped p-type ZnO thin films have been realized by radio frequency (rf) magnetron sputtering using a mixture of argon and oxygen as sputtering gas. Types of conduction and electrical properties in codoped ZnO films were found to be dependent on oxygen partial pressure ratios in the sputtering gas mixture. When oxygen partial pressure ratio was 70%, the codoped ZnO film showed p-type conduction and had the best electrical properties. Additionally, the p-ZnO/n-Si heterojunction showed a clear p-n diode characteristic. XRD results indicate that the B-N codoped ZnO film prepared in 70% oxygen partial pressure ratio has high crystal quality with (0 0 2) preferential orientation. Meanwhile, the B-N codoped ZnO film has high optical quality and displays the stronger near band edge (NBE) emission in the temperature-dependent photoluminescence spectrum, the acceptor energy level was estimated to be located at 125 meV above the valence band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号