首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A theoretical study is made on the mobile interstitial and mobile electron models of mechano-induced luminescence in coloured alkali halide crystals. Equations derived indicate that the mechanoluminescence intensity should depend on several factors like strain rate, applied stress, temperature, density of F-centres and volume of crystal. The equations also involve the efficiency and decay time of mechanoluminescence. Results of mobile interstitial and mobile electron models are compared with the experimental observations, which indicated that the latter is more suitable as compared to the former. From the temperature dependence of ML, the energy gaps between the dislocation band and ground state of F-centre is calculated which are 0.08, 0.072 and 0.09 eV for KCl, KBr and NaCl crystals, respectively. The theory predicts that the decay of ML intensity is related to the process of stress relaxation in crystals.  相似文献   

2.
The mechanoluminescence (ML) of NaCl, NaBr, NaF, LiCl and LiF crystals ceases at 105, 58, 170, 151 and 175°C respectively. Both the temperatureT c at whichML disappears and the temperatureT s required to induce a particular percentage of colouration decay in a given time, decreases with increasing nearest neighbour distance in alkali halide crystals. This perhaps suggests that similar processes cause the disappearance ofml in alkali halide crystals and the colouration decay in their microcrystalline powders. It is shown that mobile dislocations may cause the leakage of surface charge and the decay of colouration in microcrystalline powders.  相似文献   

3.
    
Mechanoluminescence (ML) emission from coloured alkali halide crystals takes place during their elastic and plastic deformation. The ML emission during the elastic deformation occurs due to the mechanical interaction between dislocation segments and F-centres, and the ML emission during the plastic deformation takes place due to the mechanical interaction between the moving dislocations and F-centres. In the elastic region, the ML intensity increases linearly with the strain or deformation time, and in this case, the saturation region could not be observed because of the beginning of the plastic deformation before the start of the saturation in the ML intensity. In the plastic region, initially the ML intensity also increases linearly with the strain or deformation time, and later on, it attains a saturation value for large deformation. When the deformation is stopped, initially the ML intensity decreases at a fast rate; later on, it decreases at a slow rate. The decay time for the fast decrease of the ML intensity gives the relaxation time of dislocation segments or pinning time of the dislocations, and the decay time of the slow decrease of the ML intensity gives the diffusion time of holes in the crystals. The saturation value of the ML intensity increases linearly with the strain rate and also with the density of F-centres in the crystals. Initially, the saturation value of the ML intensity increases with increasing temperature, and for higher temperatures the ML intensity decreases with increasing temperature. Therefore, the ML intensity is optimum for a particular temperature of the crystals. From the ML measurements, the relaxation time of dislocation segments, pinning time of dislocations, diffusion time of holes and the energy gap between the bottom of the acceptor dislocation band and interacting F-centre level can be determined. Expressions derived for the ML induced by elastic and plastic deformation of coloured alkali halide crystals at fixed strain rates indicates that the ML intensity depends on the strain, strain rate, density of colour centres, size of crystals, temperature, luminescence efficiency, etc. A good agreement is found between the theoretical and experimental results.  相似文献   

4.
Abstract

Spectroscopic properties of FA centres in Li doped KCl-KBr mixed crystals were studied. At low temperature light induced spectral shifts, for the FA1 hand towards lower energy and for the FA2 band towards higher energy, were observed. The shifts are proposed to be due to a configurational change where the electron occupied vacancy finds a new location in relation to the neighbouring chlorine and bromine ions. The recovery to the original configuration, obtained in the F → FA conversion, is a temperature activated process.  相似文献   

5.
Abstract

Thin films of KCl, KBr, RbCl have been obtained by thermal evaporation on amorphous substrates with different deposition parameters. The crystalline structure and orientation have been determined, and the films resulted to be policrystals with high uniformity of orientation. Production of colour centres, achieved by irradiation with low-energy electrons, leads to F center concentrations barely observed in large crystals. The colouration kinetics is similar to that in the bulk, and shows after a maximum an exponential decay at high doses because of centre aggregation coupled to thermal effects. The films exhibit a bleaching process of the colour centres at room temperature, whose kinetics depends on the irradiation damage.  相似文献   

6.
X-ray diffraction and colour centre studies have been carried out on RbCl-RbBr mixed crystals. The lattice constant closely follows the linear form of Vegard’s law. The mean Debye-Waller factor shows a highly nonlinear composition dependence. The composition dependence of the F-band peak position is slightly nonlinear but that of the F-band half-width is highly nonlinear. The Ivey-Mollow relation holds for this system with an index of 2.5. The ‘size effect’ is found to have a dominant effect on the F-band width.  相似文献   

7.
The present paper reports the correlation between deformation bleaching of coloration and mechanoluminescence (ML) in coloured alkali halide crystals. When the F-centre electrons captured by moving dislocations are picked up by holes, deep traps and other compatible traps, then deformation bleaching occurs. At the same time, radiative recombination of dislocation captured electrons with the holes gives rise to the mechanoluminescence. Expressions are derived for the strain dependence of the density of colour centres in deformed crystals and also for the number of colour centres bleached. So far as strain, temperature, density of colour centres, E a and volume dependence are concerned, there exists a correlation between the deformation bleaching and ML in coloured alkali halide crystals. From the strain dependence of the density of colour centres in deformed crystals, the value of coefficient of deformation bleaching D is determined and it is found to be 1.93 and 2.00 for KCl and KBr crystals, respectively. The value of (D+χ) is determined from the strain dependence of the ML intensity and it is found to be 2.6 and 3.7 for KCl and KBr crystals, respectively. This gives the value of coefficient of deformation generated compatible traps χ to be 0.67 and 1.7 for KCl and KBr crystals, respectively.  相似文献   

8.
Jai Shanker  M P Verma 《Pramana》1973,1(6):243-246
The fractional ionic character of alkali and silver halide crystals is defined in terms of the deviations from the additivity rule for polarizabilities of ions. The electronic polarizabilities of ions are calculated using an empirical relationship according to which the electronic polarizability of an ion can be assumed to be directly proportional to the cube of its radius. The calculated ionicities indicate that the alkali halides are nearly or more than 90% ionic and silver halides are much less ionic which is also evident from the Phillips ionicity scale.  相似文献   

9.
10.
Thermally stimulated luminescence as well as optical absorption and emission spectra have been studied in LiF crystals irradiated in a reactor at different temperatures. It was shown that aggregate colour centres give rise to thermally stimulated luminescence peaks registered below 450°C. Peak at 470°C is observed only in crystals that have been irradiated at standard temperature of the reactor experimental channels. The peak is caused by interaction of dislocations and F centres.  相似文献   

11.
The SrAl2O4:Eu,Dy phosphors prepared by solid state reaction technique in a reduced atmosphere of 95% Ar+5% H2 exhibit very intense mechanoluminescence (ML) which can be seen in daylight with naked eye. When the phosphors are deformed by the impact of a low-power electric hammer, initially the ML intensity increases with time, attains a maximum value and then decreases with time. After the threshold pressure, the peak of ML intensity Im and the total ML intensity IT increase with the increasing value of the impact pressure. For the ML excited by the pressure pulse of short duration, two decay times of ML are observed; however, for the ML excited by the pressure pulse of long duration, only one decay time is observed. The ML intensity decreases with successive applications of pressure on SrAl2O4:Eu,Dy phosphors. For the low applied pressure in the range below the limit of elasticity recovery of ML intensity takes place when the sample is exposed to ultraviolet (UV) light. This fact indicates that the vacant traps produced during the application of pressure pulses get filled during the exposure of the sample to UV light. The ML in the elastic region of SrAl2O4:Eu,Dy phosphors can be understood on the basis of the piezoelectrically induced detrapping model. The non-irradiated SrAl2O4:Eu2+,Dy3+ phosphors exhibit ML during the fracture of the compact mass of phosphors whose ML intensity is less when compared to that of the UV-irradiated compact masses. The ML induced by pressure pulses may be useful for determining the magnitude and rise time of unknown pressure pulses and to determine the lifetime of charge carriers in shallow traps.  相似文献   

12.
The integrated intensities of Bragg reflections have been measured for mixed crystals in the K x Rb(1−x)Br system with an x-ray powder diffractometer. From the intensities, the mean Debye-Waller factors are determined. The Debye-Waller factors are corrected for static contribution and Debye temperature values are determined for the entire composition range. The x-ray Debye temperatures follow the Kopp-Neumann equation closely.  相似文献   

13.
B P Chandra  R S Chandok  P K Khare 《Pramana》1997,48(6):1135-1143
A new field emission theory of dislocation-sensitized photo-stimulated exo-electron emission (DSPEE) is proposed, which shows that the increase in the intensity of photo emission fromF-centres during plastic deformation is caused by the appearance of an electric field which draws excited electrons out of the deeper layer and, therefore, increases the number of electrons which reach the surface. The theory of DSPEE shows that the variation of DSPEE flux intensity should obey the following relation
. The theory of DSPEE is able to explain several experimental observations like linear increase of DSPEE intensityJ e with the strain at low deformation, occurrence of the saturation inJ e at higher deformation, temperature dependence ofJ e, linear dependence ofJ e on the electric field strength, the order of the critical strain at which saturation occurs inJ e, and the ratio of the PEE intensity of deformed and undeformed crystals. At lower values of the strain, some of the excited electrons are captured by surface traps, where the deformation generated electric field is not able to cause the exo-emission. At larger deformation (in between 2% and 3%) of the crystal, the deformation-generated electric field becomes sufficient to cause an additional exo-electron emission of the electrons trapped in surface traps, and therefore,t here appears a hump in theJ e versusε curves of the crystals.  相似文献   

14.
The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constantτ s for surface annihilation of dislocations and the pinning timeτ p of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.  相似文献   

15.
The present paper reports the fast electron emission produced during the cleavage of alkali halide crystals and models the dynamics of the process. The mechano-emission arises as a result of the ionization of surface traps at the expense of the energy which is released in the annihilation of the defects which are formed during cleavage. The slow electrons which appear upon the ionization of surface traps are subsequently accelerated in the field of negatively charged segment of the freshly cleaved surface. Considering the basic mechanism of fast electron emission, expressions are derived which are able to explain satisfactorily the temporal, thermal, charge, surface, coloration, water adsorption and other characteristics of the fast electron emission produced during the cleavage of crystals. The decay time of the charges on the newly created surfaces, and the velocity of cracks can be determined from the measurements of fast electron emission produced during the cleavage of crystals. It is shown that two types of diffusing centres are responsible for the charge relaxation and thereby for the emission of fast electrons produced during the cleavage of alkali halide crystals.  相似文献   

16.
Gamma ray-induced F bands in melt grown mixed crystals of KCl and KBr are studied at room temperature. The effect of dislocations on F-centre density in mixed crystals has been discussed. In addition, the influence of composition of mixed crystals on F band parameters has been studied. The behaviour of observed F bands is correlated to local strained regions and to the configuration of F centre in mixed crystals.  相似文献   

17.
    
The elastico-mechanoluminescence (EML) intensity of X or γ-irradiated alkali halide crystals can be used in radiation dosimetry. The EML intensity of X or γ-irradiated alkali halide crystals increases linearly with the strain of the crystals, and when the crosshead of the testing machine deforming an X or γ-irradiated crystal is stopped, then the EML intensity decreases with time. The semilog plot of the EML intensity versus (t − tc) (where tc is the time where the crosshead of the testing machine is stopped) indicates that, in the post-deformation region, the EML intensity initially decreases exponentially at a fast rate and later on it decreases exponentially at a slow rate. The EML intensity increases linearly with the density of the F-centres in the crystals. This fact indicates that elastico-ML can suitably be used for the radiation dosimetry. The EML spectra of X or γ-irradiated alkali halide crystals are similar to their thermoluminescence spectra. Based on the detrapping of electrons during the mechanical interaction between the dislocation segments and F-centres, an expression is derived, which indicates that the EML intensity should increase linearly with the density of F-centres in the crystals. The expression derived for the decay of EML indicates that the decay time for the fast decrease of EML should gives the pinning time of dislocation segments (lifetime of interacting F-centres), and the decay time for the slow decrease of EML intensity should gives the lifetime of electrons in the shallow traps. As the elastic deformation is non-destructive phenomenon and the EML intensity depends on the radiation dosage given to the alkali halide crystals, similar to the thermoluminescence and photo-stimulated luminescence, the EML of alkali halide crystals and other crystals may be used for the radiation dosimetry. In EML dosimetry, the same crystal can be used number of times because the elastic deformation does not cause permanent deformation in the crystals, and moreover, comparatively the devices needed for the EML measurements are of low cost and very simple. In recent years, a large number of elastico mechanoluminescent materials have been investigated, and the study of their suitability for the radiation dosimetry may be interesting.  相似文献   

18.
    
Nickel doped single crystal diamond layers were grown by microwave‐plasma enhanced chemical vapour deposition. Optical emission spectroscopy (OES) utilised during growth proved that the organometallic compound nickelocene is an applicable nickel source. It was possible to produce stable and adjustable nickel OES signals during growth by altering the flux of the nickelocene carrier gas. The successful incorporation of nickel into the diamond layers was verified by secondary ion mass spectrometry. Cathodoluminescence (CL) was applied to reveal optically active defects related to nickel. The signature of substitutionally incorporated nickel, namely the nickel related 1.4 eV centre, as well as the 2.369 and 1.563 eV centres were observed in CL. The latter is supposed to be a single‐photon emitter on the basis of a nickel–nitrogen defect centre.  相似文献   

19.
Refractive index changes due to the F → M colour centre conversion in a KBr crystal are given as a function of angular frequency and temperature. The applicability of the results obtained for holographic recording is discussed.  相似文献   

20.
Abstract

A brief survey of our studies of free and self-trapped excitons (FE and STE) in alkali halide crystals under hydrostatic pressure up to 12.5 kbar at 4.2–140 K is presented. Main attention is paid to the following effects observed: (1) the strong coupling of three energy levels of FE in CsI revealing itself as an exciton analog of pressure-scanned Fermi resonance; (2) emergence of a new emission band of STE in CsI under pressure; (3) a large pressure shift of the thermal quenching curve for STE emission in NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号