首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of cross-linked network polysiloxanes containing oligoethylene oxide units, (OCH2CH2)n, as internal free chains have been synthesized by performing hydrosilylation of partially PEO-substituted polysiloxane precursor with , ω-diallyl terminated poly(ethylene glycol). The polymer electrolytes were formed by complexing with LiN(CF3SO2)2 electrolyte salt and exhibited superior conductive property. The σRT of the network polymer electrolytes is in the range of 2.50×10−5 to 1.62×10−4 S/cm and depends on the cross-linking density (in terms of Si–H amount of the siloxane precursor), repeating unit number of internal oligoethylene oxide and chain length of the cross-linker. The significant enhancement of the conductivity was observed when low molecular weight dimethyl poly(ethylene glycol) was added as plasticizer. The temperature dependence of the ionic conductivity was also studied, following the Vogel–Tamman–Fulcher (VTF) equation.  相似文献   

2.
Transport, thermal and structural properties of the composite solid electrolytes (1 −x)CsHSO4---xSiO2 (where x = 0–0.8) were investigated. The composites were prepared by mechanical mixing of components followed by heating at temperatures near CsHSO4 melting point (483 K). The dependence of low temperature phase conductivity on x has a maximum with a value 2.5 orders of magnitude higher than that of pure CsHSO4 and conductivity is governed by protons. Heterogeneous doping is shown to change markedly the thermodynamic parameters of the ionic component. The phase transition temperature CsHSO4 in the composites decreases from 414 to 350 K with the increase of the content of heterogeneous additive SiO2 from 0 to 0.7. As x raises CsHSO4 the amorphization takes place and the relative change of ionic conductivity at phase transition diminishes, the phase transition becomes diffusive and disappears for the 0.2CsHSO4---0.8SiO2 composite.  相似文献   

3.
Spin–lattice relaxation times T1 in solid pregnenolone have been studied over a wide range of temperatures, from 77 up to 417 K. The dynamic processes arising from C3 motion of the three methyl substituents are separated, and their activation parameters are determined.  相似文献   

4.
《Current Applied Physics》2015,15(2):135-143
Solid polymer electrolytes consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50:50 wt/wt%) with lithium triflate (LiCF3SO3) as a dopant ionic salt at stoichiometric ratio [EO + (CO)]:Li+ = 9:1, poly(ethylene glycol) (PEG) as plasticizer (10 wt%) and montmorillonite (MMT) clay as nanofiller (3 wt%) have been prepared by solution cast followed by melt–pressing method. The X–ray diffraction study infers that the (PEO–PMMA)–LiCF3SO3 electrolyte is predominantly amorphous, but (PEO–PMMA)–LiCF3SO3–10 wt% PEG electrolyte has some PEO crystalline cluster, whereas (PEO–PMMA)–LiCF3SO3–10 wt% PEG–3 wt% MMT electrolyte is an amorphous with intercalated and exfoliated MMT structures. The complex dielectric function, ac electrical conductivity, electric modulus and impedance spectra of these electrolytes have been investigated over the frequency range 20 Hz to 1 MHz. These spectra have been analysed in terms of the contribution of electrode polarization phenomenon in the low frequency region and the dynamics of cations coordinated polymer chain segments in the high frequency region, and also their variation on the addition of PEG and MMT in the electrolytes. The temperature dependent dc ionic conductivity, dielectric relaxation time and dielectric strength of the plasticized nanocomposite electrolyte obey the Arrhenius behaviour. The mechanism of ions transportation and the dependence of ionic conductivity on the segmental motion of polymer chain, dielectric strength, and amorphicity of these electrolytes have been explored. The room temperature ionic conductivity values of the electrolytes are found ∼10−5 S cm−1, confirming their use in preparation of all-solid-state ion conducting devices.  相似文献   

5.
We present a quantitative analysis of the temperature dependence of the muon spin relaxation rate measured in simple magnets. We consider the low temperature, critical and high temperature regimes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A general theory of spin-lattice nuclear relaxation of spins I=1/2 caused by dipole-dipole couplings to quadrupole spins S1, characterized by a non-zero averaged (static) quadrupole coupling, is presented. In multispin systems containing quadrupolar and dipolar nuclei, transitions of spins 1/2 leading to their relaxation are associated through dipole-dipole couplings with certain transitions of quadrupole spins. The averaged quadrupole coupling attributes to the energy level structure of the quadrupole spin and influences in this manner relaxation processes of the spin 1/2. Typically, quadrupole spins exhibit also a complex multiexponential relaxation sensed by the dipolar spin as an additional modulation of the mutual dipole-dipole coupling. The proposed model includes both effects and is valid for an arbitrary magnetic field and an arbitrary quadrupole spin quantum number. The theory is applied to interpret fluorine relaxation profiles in LaF3 ionic crystals. The obtained results are compared with predictions of the 'classical' Solomon relaxation theory.  相似文献   

7.
ABSTRACT

1H spin–lattice relaxation experiments have been performed for triphenylbismuth dissolved in fully deuterated glycerol and tetrahydrofuran. The experiments have been carried out in a broad frequency range, from 10?kHz to 40?MHz, versus temperature. The data have been analysed in terms of a relaxation model including two relaxation pathways: 1H-1H dipole–dipole interactions between intrinsic protons of triphenylbismuth molecule and 1H-2H dipole–dipole interactions between the solvent and solute molecules. As a result of the analysis, rotational correlation times of triphenylbismuth molecules in the solutions and relative translational diffusion coefficient between the solvent and solute molecules have been determined. Moreover, the role of the intramolecular 1H-1H relaxation contribution has been revealed, depending on the motional parameters, as a result of decomposing the overall relaxation dispersion profile into contributions associated with the 1H-1H and 1H-2H relaxation pathways. The possibility of accessing the contribution of the relaxation of the intrinsic protons is important from the perspective of exploiting Quadrupole Relaxation Enhancement effects as possible contrast mechanisms for Magnetic Resonance Imaging.  相似文献   

8.
基于玻璃化转变的分子串模型的分子串弛豫方程,提出了更为精确的模拟分子串中所有空间弛豫模式(SRM)的蒙特卡罗模拟方案. 模拟得出各个SRM的弛豫时间随温度和分子串长度的变化结果与分子串模型中分子串弛豫方程的预言完全一致,即理论预期和模拟结果相互印证. 应当指出,分子串能否作为液态中集体单元的必要条件是在考虑到分子串之间的不均匀随机相互作用后,分子串的所有SRM的定性特征是不能改变的,这就需要对不同分子串的SRM之间的耦合进行研究. 但是迄今为止,仍未发现相关的严格解,仅有近似的自洽弛豫平均场方法. 由此可知,所提出的模拟方案为研究不同分子串的SRM之间的耦合(包括上述自洽场的可行性)提供了必要的基础. 关键词: 玻璃化转变 弛豫动力学 蒙特卡罗模拟 分子串  相似文献   

9.
The vibrational relaxation of OCl and OCl in the bulk and the liquid/vapor interface of water and acetonitrile is studied by molecular dynamics computer simulations. Both equilibrium calculations of the vibrational friction and non-equilibrium simulation of the energy relaxation are used to elucidate the factors that influence the rate of energy relaxation in systems that represent polar ionic and non-ionic solutes in polar protic and non-protic solvents. We find that, in agreement with previous experimental and theoretical studies, the relaxation of the ionic solute is much faster than that of the non-ionic solute in both the solvents. However, while the relaxation is slowed down considerably when the non-ionic solute is transferred from the bulk to the interface, no such surface effect is found in the case of the ionic solute. This behavior can be explained by noting that the ionic solute is able to keep its first solvation shell intact upon transfer to the interface and that the main contribution to the friction is due to the Lennard-Jones part of the intermolecular potential.  相似文献   

10.
We present in this work a review concerning wide frequency rangeT 1 proton NMR relaxation studies performed in compounds exhibiting columnar mesophases, namely the Colho mesophase in the case of a liquid crystal of discotic molecules and the øh mesophase in the case of a liquid crystal of biforked molecules. These NMR relaxation studies were performed combining conventional and fast field cycling NMR techniques in a frequency range between 100 Hz and 300 MHz. The possibility of probing such a large frequency range has provided a way to effectively distinguish the influence, on theT 1 relaxation profiles, of the different molecular movements observed in this type of mesophases. In addition, we present a comparison between the molecular dynamics in columnar (øh) and lamellar (SmC) mesophases exhibited by the same biforked compound.  相似文献   

11.
A fresh analysis of literature data shows how the influences of temperature and pressure on ion transport and structural relaxation in glass-forming systems may be combined within the framework of ‘master plots’ based on the equation EA = M · VA, to reveal new insights into coupling and decoupling effects in a wide range of systems. EA,σ and VA,σ are, respectively, instantaneous activation energies and volumes for ionic conductivity and the parameter, Mσ, is a corresponding ‘process modulus’. For structural relaxations occurring at the glass transition, the appropriate modulus is given by Ms = Tg · dP/dTg. We can now identify typical behaviour patterns for fragile liquids on the one hand, and typical inorganic glasses on the other. Thus, the parameters, Mσ and Ms, for fragile systems such as molten Ca(NO3)2:KNO3 (CKN) or a typical polymer electrolyte such as a complex of LiCF3SO3 in PPG, are found to remain constant over a wide range of temperatures down to Tg, despite changes in the temperature (and pressure) dependences of the ionic conductivities, as indicated for example by a return to Arrhenius behaviour in the case of CKN, or by so-called Stickel plots and changes in the VTF parameters for the polymer electrolytes. If E* and V* are activation energies and volumes assigned to elementary steps, when again E* = M · V*, we can go further and identify the microscopic processes driving forward structural relaxation. In the case of inorganic glasses, where usually we find the decoupling index Rτ ≈ 1012, we identify two distinct decoupling paradigms represented by strong and fragile systems respectively, where in both cases the activation volumes for ion transport are very similar to the corresponding ionic volumes. In the former case (typified by the strongly cross-linked silicate and aluminosilicate systems), the negative activation volumes for structural relaxation (negative values of dTg/dP) are clearly indicative of a ‘water-like’ behaviour attributable to the collapse of the network under pressure. On the other hand, for the more fragile fast-ion conducting silver iodomolybdate glass, the experimental results show that Ms (at Tg) ≈ Mσ (in glass), implying some recoupling of structural relaxation to ion transport. Arguments based on the dynamic structure model lead us to predict that a similar close link should exist between Ms (at Tg) and Mσ in the relatively fragile lithium and sodium borate glasses, thus highlighting the need for more information concerning the effects of pressure on the glass transition temperatures of common inorganic glasses.  相似文献   

12.
尹经禅  肖晓晟  杨昌喜 《物理学报》2009,58(12):8316-8325
为了避免在高功率光纤放大器和光纤相位共轭镜等实际应用中因受激Brillouin散射(SBS)造成的光纤损伤,根据描述SBS动态弛豫振荡特性的振幅耦合方程,利用有限差分的数值模拟方法研究了光纤中SBS的动态弛豫振荡特性,并对其抑制进行了初步探讨.得到了光纤中SBS弛豫振荡在不同的脉冲上升时间的时空三维图;同时利用方波和脉冲光作抽运光进行了相应实验研究,实验结果与理论模拟结果符合很好.结果表明,增大抽运光脉冲上升时间可以有效抑制因SBS而产生的弛豫振荡,进而避免因其造成的光纤损伤. 关键词: 受激Brillouin散射 动态弛豫振荡特性 有限差分法  相似文献   

13.
Densification of Na4Zr2Si3O12 (NZS) solid electrolytes was performed by dispersing TiO2 (0.8–5.9 wt. %, corresponding to 5–30 mol %) in NZS powders prior to sintering at 1200°C. Increases in pellet density, from ca. 65 to 94% of the theoretical (X-ray density) value, and in electrical conductivity from 10−7 to 10−6 S/cm at 50°C were observed for small additions of TiO2, which acts as a sintering aid. AC impedance spectroscopy reveals that the enhancement is not a bulk effect but instead is associated with a reduction in inter-granular constriction resistances within porous NZS ceramics. The presence of adsorbed water species in NZS powders prepared via a sol-gel route is found to have a dramatic effect on the conductivity enhancement.  相似文献   

14.
Relaxation calculations for rapidly spinning samples show that spin-lattice relaxation time (T(1Z)) anisotropy varies with the angle between the rotor spinning axis and the external field. When the rate of molecular motion is in the extreme narrowing limit, the measurement of T(1Z) anisotropies for two different values of the spinning angle allows the determination of two linear combinations of the three static spectral densities, J(0)(0), J(1)(0), and J(2)(0). These functions are sensitive to molecular geometry and the rate and trajectory of motion. The utility of these linear combinations in the investigation of molecular dynamics in solids has been demonstrated with natural abundance (13)C NMR experiments on ferrocene. In an isolated (13)C-(1,2)H group, the dipole-dipole interaction has the same orientational dependence as the quadrupole interaction. Thus, the spectral densities that are responsible for dipolar relaxation of (13)C are the same as those responsible for deuteron quadrupolar relaxation. For ferrocene-d(10), deuteron T(1Z) and T(1Q) anisotropies and the relaxation time of the (13)C magic angle spinning peak provide sufficient information to determine the orientation dependence of all three individual spectral densities.  相似文献   

15.
When a neutral nonelectrolyte is added to an electrolytic solution, the electrical conductance of the electrolytic solution is usually reduced. Attempts to correlate this effect with changes in the bulk properties of the solvent have been unsuccessful. The purpose of this paper is to account for this effect (for dilute solutions) in terms of a statistical mechanical theory which takes into account the specific interactions between molecules of the nonelectrolyte and ions of the electrolyte. A simple continuum model is used to represent the solution containing nonelectrolyte molecules and electrolyte ions placed in a constant, homogeneous electric field. With an approximate theory valid at infinite dilution, an equation describing the variation of the limiting equivalent conductance of the electrolyte with the concentration of an ideal dipolar nonelectrolyte is obtained. Comparisons with experiments are made.Research supported by the Bowling Green State University Faculty Research Committee in the form of a one-half time grant for the summer of 1973.  相似文献   

16.
Relaxation plays a crucial role in the spin dynamics of dynamic nuclear polarisation. We review here two different strategies that have recently been used to incorporate relaxation in models to predict the spin dynamics of solid effect dynamic nuclear polarisation. A detailed explanation is provided on how the Lindblad–Kossakowski form of the master equation can be used to describe relaxation in a spin system. Fluctuations of the spin interactions with the environment as a cause of relaxation are discussed and it is demonstrated how the relaxation superoperator acting in Liouville space on the density operator can be derived in the Lindblad–Kossakowski form by averaging out non-secular terms in an appropriate interaction frame. Furthermore we provide a formalism for the derivation of the relaxation superoperator starting with a choice of a basis set in Hilbert space. We show that the differences in the prediction of the nuclear polarisation dynamics that are found for certain parameter choices arise from the use of different interaction frames in the two different strategies. In addition, we provide a summary of different relaxation mechanisms that need to be considered to obtain more realistic spin dynamic simulations of solid effect dynamic nuclear polarisation.  相似文献   

17.
A solid state ionic device to titrate electrolytes in water was produced, and the performance of the device was examined. The device named the coulometric titration apparatus is a three-component electrochemical cell like an electrodialyzer. The central component, the analyzing room, is a container of the sample solution. The sample solution, 10−1 M H2SO4, NaOH, Na2SO4, or 10−7–10−2 M Na2SO4, is separated from the cathode and the anode room solutions, 10−2 M H2SO4, NaOH, or Na2SO4, by Nafion-117 and Tosflex IE-SF34 membranes working as the anion and the cation blocking electrodes, respectively. The quantity of electricity to extract whole electrolytes in the sample solution is evaluated from the peak area of the titration curve. The sample concentration is successfully determined by the calibration curve method, with the quantity of electricity and the sample volume (6 ml) in the range from 10−1 to 10−5 M.  相似文献   

18.
The kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation process have been investigated by molecular dynamics simulations, and the microstructure evolution analyzed by the cluster-type index method (CTIM) and the tracing method. It has been found that, the dynamic features are consistently correlated with the microstructure evolution and the crystallization characteristics in the mean square displacement (MSD) and the non-Gaussian parameter (NGP): the β relaxation regime corresponds to the minor structural rearrangement because of the “cage effect”, and the atoms attempt to escape from the “cages”; the α relaxation regime is related to a more diffusive movement of atoms, and the appearance of the second plateau in MSD and the non-zero plateau in NGP corresponds to the completion of crystallization. In addition, three distinct stages of nucleation, growth of nuclei and coarsening of crystallites in the crystallization process have been clearly revealed.  相似文献   

19.
Inorganic-organic hybrid electrolytes were prepared by the mechanochemical method using the Li+ ion conductive 70Li2S·30P2S5 glass and various alkanediols. Local structure of the prepared electrolytes was analyzed by FT-IR and Raman spectroscopy. The effects of the proportion and chain length of alkanediols on conductivity of the hybrid electrolytes were investigated. The hybrid electrolyte with 2 mol.% of 1,4-butanediol exhibited the conductivity of 9.7 × 10− 5 S cm− 1 at room temperature and the unity of lithium ion transference number. The use of alkanediols with shorter chain length was effective in increasing conductivity of hybrid electrolytes. The electrolyte using ethyleneglycol showed the highest conductivity of 1.1 × 10− 4 S cm− 1 at room temperature. Lowering glass transition temperature by incorporation of alkanediols is responsible for the enhancement of conductivity of hybrid electrolytes.  相似文献   

20.
Raman and NMR spectroscopy have been used to investigate the state of ion association in systems comprising salt, polymer and/or solvent. The dissolved salt in each case was lithium triflate (lithium trifluoromethane sulphonate). Five systems were studied, comprising polymer gel electrolytes or constituents of such electrolytes. These were: salted (a) N,N'-dimethyl formamide (DMF), (b) tetraethylene glycol dimethylether (tetraglyme), (c) polyethylene glycol (PEG), (d) end-esterified PEG and (e) poly(vinylidene fluoride) (PVDF) gels containing either DMF or tetraglyme. Raman results give a broad indication of the significance of end-group, solvent and polymer choice in triflate-salted systems. In all cases, anion association rises with temperature, often with a significant increase in ion aggregation. The reliability of these results is supported by an analysis of systematic errors incident in this technique for ion association measurements. A limited comparison performed on the system having the highest concentration of ion aggregates (end-esterified PEG) suggests that Raman and NMR spectroscopy provide different information concerning ion association. Reasons for the difference are discussed, concluding that complementary information is obtained owing to the different time constants relevant to the two techniques and to the dependence of the Raman results on molecular proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号