首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The fabrication of Step-and-Flash Imprint Lithography (S-FIL) templates with line widths of 50 nm is described in this work. The structures have been patterned using a Ga+ focused ion beam (FIB) in a quartz template. FIB milling is generally accompanied with re-deposition effects, which represent a hindrance to densely patterned nanostructures required in most NIL applications. To reduce these re-deposition effects, in this research, xenon difluoride (XeF2) enhanced FIB etching was applied that also increases the material removal rates in comparison to pure kinetic ion sputtering. To optimise the process when using XeF2 gas the following ion scanning parameters have been examined: ion dose, beam current, dwell time and beam overlap (step size). It has been found that the assisting gases at very low doses do not bring significant etching enhancements whilst the sputtering rates have increased at high doses. Using the XeF2 gas-assisted etching, FIB structuring has been used to fabricate <100 nm structures onto quartz S-FIL templates. The presence of XeF2 considerably enhances the etching rate of quartz without any significant negative effects on the spatial resolution of the FIB lithographic process and reduces the template processing time.  相似文献   

2.
Light-induced dry etching of Si(100) in the VUV range using synchrotron radiation (SR) and a halogen-containing gas (XeF2) has been investigated with respect to selectivity, anisotropy, quantum efficiency, optimal wavelength, spatial resolution and quality of the photochemical etching processes. Microstructuring of Si with XeF2can be optimized to achieve etched structures in the sub-micrometre range by increasing the contrast in choosing a wavelength with minimal unselective etching. The strength of unselective etching is strongly wavelength dependent and follows the XeF2gas phase absorption coefficient. Fragments from dissociation of the XeF2reach the Si surface and thus cause unselective etching. Optimal dry etching occurs for wavelengths around 120 nm because the selectivity is high due to an excitation of a surface layer and also the quantum efficiency is very large. An efficiency of 10 removed Si atoms per incoming photon, which exceeds that in the visible spectral range by more than four orders of magnitude, combined with the higher spatial resolution at 120 nm compared to the conventional excimer laser and I-line wavelengths and the availability of optical materials for imaging present a perspective for generating line densities in the Gbit range.  相似文献   

3.
O2SF6 plasma effects on processed GaAs surfaces have been investigated. The influence of plasma parameters such as composition, power and exposure time has been studied. The microwave plasma treatment efficiency has been studied by surface depth profiling (cycles consisting of XPS measurements followed by a slight etching) coupled with an original modelling calculation. We have pointed out that SF6 addition in plasma increases the oxidative rule of oxygen by increasing the total oxide thickness and that the quantity of the different oxidative and passivating species does not limit the oxidative mechanism, in the O2:SF6 ratio range 80:20 to 40:60. The increase in the plasma power leads to a change in the composition of the outer region of the oxide layer with an increase in the gallium content on the surface, and to an increase in the total oxide layer. The exposure time to the plasma increases also these two phenomena.  相似文献   

4.
Previously, plasma‐enhanced dry etching has been used to generate three‐dimensional GaAs semiconductor structures, however, dry etching induces surface damages that degrade optical properties. Here, we demonstrate the fabrication method forming various types of GaAs microstructures through the combination etching process using the wet‐chemical solution. In this method, a gold (Au)‐pattern is employed as an etching mask to facilitate not only the typical wet etching but also the metal‐assisted chemical etching (MacEtch). High‐aspect‐ratio, tapered GaAs micropillars are produced by using [HF]:[H2O2]:[EtOH] as an etching solution, and their taper angle can be tuned by changing the molar ratio of the etching solution. In addition, GaAs microholes are formed when UV light is illuminated during the etching process. Since the wet etching process is free of the surface damage compared to the dry etching process, the GaAs microstructures demonstrated to be well formed here are promising for the applications of III–V optoelectronic devices such as solar cells, laser diodes, and photonic crystal devices. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The element composition and crystal structure of a second phase forming growth microdefects were investigated by electron microscopy, reflection electron diffraction, and electron-probe microanalysis at various stages of the gas-phase epitaxy of gallium and indium arsenides. Following chemical-mechanical polishing and gas etching, the elements Cu and Cr were revealed on the substrates; Cu, the element of the III group, and the doping impurity were found on the surface of the epitaxial layers. According to electron diffraction data, after chemical-mechanical polishing the substrate surface is amorphous, following gas etching and epitaxy a second phase in a polycrystalline state is found on the surface. The parameters of its structure are close to those of the basic material and of ternary compounds of the type CuGaX2 and CuInX2, where X=S, Se, Te. The possible sources of the background contamination are analyzed.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, No. 2, pp. 70–74, February, 1985.The authors are grateful to L. G. Lavrent'eva for useful discussion of the results, G. A. Aleksandrova, and L. P. Porokhovnichenko for supplying the specimens for the investigation and I. G. Lyapichev for carrying out the electron-probe microanalysis.  相似文献   

6.
Temperature-dependent photoluminescence (PL) from Si nanodots with Al2O3 surface passivation layers was studied. The Si nanodots were grown by low pressure chemical vapor deposition and the Al2O3 thin films were prepared by atomic layer deposition (ALD), respectively. The BOE (Buffer-Oxide-Etch) treatment resulted in the damaged surface of Si nanodots and thus caused dramatic reduction in the PL intensity. Significant enhancement of the PL intensity from Si nanodots after the deposition of Al2O3 thin films was observed over a wide temperature range, indicating the remarkable surface passivation effect to suppress the non-radiative recombination at the surface of Si nanodots. The results demonstrated that the Al2O3 surface passivation layers grown by ALD are effectually applicable to nanostructured silicon devices.  相似文献   

7.
This paper reports a study of reactive ion etching (RIE) of n-ZnO in H2/CH4 and H2/CH4/Ar gas mixtures. Variables in the experiment were gas flow ratios, radio-frequency (rf) plasma power, and total pressure. Structural and electrical parameters of the etched surfaces and films were determined. Both the highest surface roughness and highest etching rate of ZnO films were obtained with a maximum rf power of 300 W, but at different gas flow ratios and working pressures. These results were expected because increasing the rf power increased the bond-breaking efficiency of ZnO. The highest degree of surface roughness was a result of pure physical etching by H2 gas without mixed CH4 gas. The highest etching rate was obtained from physical etching of H2/Ar species associated with chemical reaction of CH4 species. Additionally, the H2/CH4/Ar plasma treatment drastically decreased the specific contact and sheet resistance of the ZnO films. These results indicated that etching the ZnO film had roughened the surface and reduced its resistivity to ohmic contact, supporting the application of a roughened transparent contact layer (TCL) in light-emitting diodes (LEDs).  相似文献   

8.
Selective formation of ZnO nanodots grown by metalorganic chemical vapor deposition (MOCVD) was achieved on focused-ion beam (FIB)-nanopatterned SiO2 and Si substrates. The selective formation characteristics, dimension, and density of ZnO nanodots on FIB-nanopatterned substrates strongly depended on the FIB-patterning and MOCVD-growth conditions. The mechanism of the selective formation of ZnO nanodots on FIB-nanopatterned SiO2 substrates is attributed to a surfactant effect of the implanted Ga which leads to the formation of the preferred nucleation sites for the growth of ZnO nanodots, while that of ZnO nanodots on nanopatterned Si substrates is mainly considered in terms of the generation of surface atomic steps and kinks, which are created by Ga+ ion sputtering, on the patterned Si areas.  相似文献   

9.
We report on a new method to produce self-assembled, unstrained, GaAs/AlGaAs quantum dots (QDs) with large confinement energy. First we create nanoholes on a GaAs surface by growing InAs islands on GaAs(0 0 1), overgrowing them with GaAs and etching the surface in situ with AsBr3 gas. Then we transfer the holes to an AlGaAs surface, fill them with GaAs and overgrow them with AlGaAs. In this way we obtain GaAs inclusions in an AlGaAs matrix. We investigate the optical properties of such QDs by photoluminescence spectroscopy and their morphology by atomic force microscopy. We show that the QD size can be tuned and emission with inhomogeneous broadening down to 8.9 meV can be achieved.  相似文献   

10.
采用同步辐射光电子能谱(SRPES)结合扫描电子显微镜(SEM)和称量法,研究了中性(NH4)2S溶液钝化GaAs(100)表面,并与常规(NH4)2S碱性溶液钝化方法进行了比较- SRPES结果表明该处理方法可以产生较厚的Ga硫化物层和较强的Ga—S键,Ga的硫化物有好的稳定性-称量法表明该方法有更低的腐蚀速率-SEM结果表明该方法钝化处理的GaAs表面所产生的腐蚀坑数目少,直径小- 关键词:  相似文献   

11.
二硫化钼纳米点正在成为有潜质的半导体材料用于光电设备的应用.然而,关于对其中激子动力学的研究却很少.本文利用飞秒瞬态吸收光谱学来研究二硫化钼纳米点的载流子动力学.结果显示,缺陷辅助的载流子再复合过程与观测到的动力学相符,通过俄歇散射对光激载流子进行俘获至少存在两种不同俘获速率的缺陷.四个过程参与了载流子驰豫,在受到光激发后,立即在~0.5 ps内载流子冷却,然后大部分载流子被缺陷快速俘获,随着泵浦能量的增加,该过程对应的时间从~4.9 ps增加到~9.2 ps,这可以用缺陷态的饱和来解释.接下来,拥有相对慢的载流子俘获速率的其它类型缺陷对小部分载流子进行俘获,该过程约65 ps.最后,剩余的少量载流子通过直接带间跃迁发生电子-空穴再复合,时间约为1 ns.研究结果可以深入了解二硫化钼纳米点中的载流子动力学基本原理,引导其更多的应用.  相似文献   

12.
王长顺  潘煦  Urisu Tsuneo 《物理学报》2006,55(11):6163-6167
利用热氧化法在硅晶片上生长SiO2薄膜,结合光刻和磁控溅射技术在SiO2薄膜表面制备接触型钴掩模,通过掩模方法在硅表面开展了同步辐射光激励的表面刻蚀研究,在室温下制备了SiO2薄膜的刻蚀图样.实验结果表明:在同步辐射光照射下,通入SF6气体可以有效地对SiO2薄膜进行各向异性刻蚀,并在一定的气压范围内,刻蚀率随SF6气体浓度的增加而增加,随样品温度的下降而升高;如果在同步辐射光照射下,用SF6和O2的混合气体作为反应气体,刻蚀过程将停止在SiO2/Si界面,即不对硅刻蚀,实现了同步辐射对硅和二氧化硅两种材料的选择性刻蚀;另外,钴表现出强的抗刻蚀能力,是一种理想的同步辐射光掩模材料. 关键词: 同步辐射刻蚀 接触型钴掩模 二氧化硅薄膜  相似文献   

13.
Photoluminescence (PL) analysis is used to study porous layers elaborated by electrochemical etching of n+ Si-doped GaAs substrate with different etching times. Temperature and power dependence photoluminescence (PL) studies were achieved to characterize the effect of the etching time on the deep levels of the n+ Si-doped GaAs. The energy emission at about 1.46 eV is attributed to the band-to-band (B-B) (e-h) recombination of a hole gas with electrons in the conduction band. The emission band is composed of four deep levels due to the complex of (VAsSiGaVGa), a complex of a (Ga vacancy - donor - As vacancy), a (SiGa-VGa3−) defect or Si clustering, and a (gallium antisite double acceptor-effective mass donor pair complex) and which peaked, respectively, at about (0.94, 1, 1.14, and 1.32 eV). The PL intensity behavior as function of the temperature is investigated, and the experimental results are fitted with a rate equation model with double thermal activation energies.  相似文献   

14.
Xenon chloride (308 nm) excimer laser-assisted etching of GaAs (100) in Cl2 was demonstrated and characterized with respect to laser and gas parameters. The etch rate increased linearly with laser fluence from thresholds in the range of 50 to 75 mJ/cm2 to the highest fluence studied, 650 mJ/cm2. For a laser fluence of 370 mJ/cm2, the etch rate varied with Cl2 pressure reaching a maximum at a Cl2 pressure of about 2 Torr. The etch rate decreased monotonically with Ar buffer gas pressure because of redeposition of GaCl3 products into the etched channel. The redeposited GaCl3 affected the etch rate and the etch morphology. The etch rate and morphology also varied with laser repetition rate. The mobility of chlorine on the surface also plays an important role in the etching mechanism.  相似文献   

15.
To study the nature and properties of potential barriers in gallium arsenide devices, we have investigated structural phase transitions in GaAs contacts with multilayer films containing refractory transition-metal borides (TiB2, LaB6). We verified the important role in degrading Schottky barrier device performance played by local mechanical stresses introduced at the interface by lateral nonuniformities in interphase interactions. We examine the electrical properties of MIS gallium arsenide devices, taking into account the high density of electronic surface states (ESS). We show it is possible to control the density of ESS by selecting the dielectric, and we discuss its deposition and annealing with a pulsed laser. We discuss the nature of potential barriers in gallium arsenide devices, drawing upon our data and previously published data and modern theoretical models.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, No. 10, pp. 52–62, October, 1993.  相似文献   

16.
Uniform arrays of silicon (Si), gallium arsenide (GaAs) and zinc oxide (ZnO) nanodots have been deposited using Pulsed Laser Deposition (PLD) technique combined with a contact mask consisting of nano-holes fabricated by E-beam lithography (EBL). These nanocrystalline semiconductor nanodots have been deposited by PLD on Si and GaAs substrates at room temperature. Characterization of the nanodots has been carried out using different techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Auger Electron Spectroscopy (AES), and Raman spectroscopy. This work demonstrates a novel technique for deposition of uniform array of semiconductor nanostructures using a contact mask at room temperature for photonic applications.  相似文献   

17.
Anisotropic etching of submicron structures is possible in an apparatus for reactive ion etching. Etch rates of Si, GaAs, SiO2 and Si4N4 have been measured as a function of pressure and rf power in freons 23 and 116. Etch rate of a Microposit 1350 H positive photoresist and selfbias of a cathode have been measured, too. On the basis of obtained results we have considered possibility of the selective etching of different materials used in technology of semiconductor devices.  相似文献   

18.
A novel approach is presented for synthesis of ZnSe nanodot arrays by physical vapor deposition on porous aluminum oxide templates with ordered channels. The structure of nanodots was studied by scanning electron microscopy and EXAFS spectroscopy. Data were obtained for the sizes of nanodots in the array and local atomic structure parameters, i.e., the interatomic distances and coordination numbers, in comparison with the data for the ZnSe film synthesized on a smooth surface of nonporous Al2O3.  相似文献   

19.
The GaAs granular films have been prepared by electrochemical anodic etching of n-GaAs in HCl electrolyte at different etching temperatures. The microstructure and optical properties of the films were investigated by micro-Raman spectrum, atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. Raman spectra reveal marked redshift and broadening, which could be explained by phonon confinement model. Results show the GaAs nanocrystalline films have formed during the anodic etching process under certain chemical conditions. Two “infrared” PL bands at ∼860 nm and ∼920 nm and a strongly enhanced visible PL band envelope around 550 nm were observed in the film prepared at etching temperature of 50 °C. The “green” PL band envelope is attributed to both quantum confinement in GaAs nanocrystals and PL of Ga2O3 and As2O3. The results reveal that the energy band structure of GaAs granular films is closely related to the etching temperatures. PACS 81.07.Bc; 78.30.Fs; 78.55.Cr  相似文献   

20.
The role of the chain mechanism of the interaction of chlorine with hydrogen in the gas phase during the reactive ionic etching (RIE) of GaAs in a CF2Cl2 plasma is discussed. In the presence of hydrogen, more volatile products are formed, and, as a result, the rate of etching becomes time-independent, while the boundary of etching becomes less diffuse and the etched surface appears to be smooth up to a depth of etching of >1 μm. The interaction of short-lived free radicals with the substrate is treated as heterogeneous chain termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号