首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction of Ti(OPri)4 with 2-methyl-2,4-pentanediol [HOGOH, where G = CMe2CH2CH(Me)] in 1?:?3 M ratio under reflux afforded the monomeric [Ti(OGO)(OGOH)2] (1), which on further reactions with [Al(OPri)3] or [Nb(OPri)5] in 1?:?1 and 1?:?2 M ratios afforded heterometallic derivatives, [Ti(OGO)3{M(OPri)n?2}] and [Ti(OGO)3{M(OPri)n?1}2] [where M = Al (n = 3), Nb (n = 5)], respectively. Similar reactions of Zr(OPri)4?PriOH with a number of glycols [HOGOH, where G = CH(Me)CH(Me), CMe2CMe2, CMe2CH2CH(Me)] yielded dimeric [Zr2(OGO)2(OGOH)4]. [Zr2(OGO)6{M(OPri)n?2}2] and [Zr2(OGO)4(OGOH)2M(OPri)n?2] [M = Al (n = 3), Ti (n = 4), Nb (n = 5)] were prepared by 1?:?2 and 1?:?1 reactions, respectively, of [Zr2(OGO)2(OGOH)4] with Al(OPri)3, Ti(OPri)4, or Nb(OPri)5. Surprisingly, a 1?:?2 reaction of [VO(OPri)3] with 2,2-diethyl-1,3-propanediol in benzene followed a different reaction and produced a neutral tetranuclear derivative [V4(O)4(μ-OCH2CEt2CH2O)2(OCH2CEt2CH2O)4] (18). All of these derivatives were characterized by elemental analysis, molecular weight measurements, FT-IR, and 1H NMR (and wherever possible, by 27Al or 51V NMR) spectroscopic studies. The derivatives [Zr2(OCMe2CH2CH(Me)O)2(OCMe2CH2CH(Me)OH)4] (9 and 18) were additionally characterized by single-crystal X-ray structure analysis.  相似文献   

2.

Reactions of bis ( g -diketonato) aluminium(III)-di- w -isopropoxo-di-isopropoxo-aluminium (III), [CH3COCHCOR)2Al( w -OPri)2Al(OPri) 2], with triphenylsilanol, Ph3SiOH, in 1:1 and 1:2 molar ratios and with diphenylsilanediol, Ph2Si(OH)2, in a 1:1 molar ratio, have resulted in the synthesis of [(CH3COCHCOR)2Al( w -OPri)2Al(OSiPh3)(OPri)], [(CH3COCHCOR)2Al( w -OPri)2Al(OSiPh3)2] and [(CH3COCHCOR)2Al( w -OPri)2Al(OSiPh2O], respectively. These are soluble in a variety of organic solvents ( e.g. , benzene, chloroform and dimethylsulfoxide) and show dinuclear behaviour in chloroform. These derivatives have been characterized by elemental analyses, molecular weight measurements, IR and NMR (1H, 13C and 27Al) studies.  相似文献   

3.
An account of the synthesis, spectroscopic, thermal and structural behavior of antimony(III) bis(pyrrolidinedithiocarbamato)alkyldithiocarbonates is presented. The reaction of antimony(III) bis(pyrrolidinedithiocarbamate) chloride with potassium organodithiocarbonate in equimolar ratio yielded the corresponding mixed derivatives of the type [(CH2)4NCS2]2SbS2COR [where R = Me, Et, Pr n , Pr i , Bu n , and Bu i ]. These newly synthesized complexes have been characterized by physicochemical [molecular weight determination, melting points, and elemental analysis], spectral [UV, IR, far-IR, NMR (1H and 13C)], thermal [TG, DTA, and FAB+ mass], and structural [powder XRD and SEM] studies. Analytical studies leads to purity and structural properties of the synthesized complexes on the other hand powder X-ray diffraction and SEM studies show that multiphase, polycrystalline, and rod-shaped complexes have been formed having nanorange crystallite size and monoclinic crystal system.  相似文献   

4.

The interaction of Bu2Sn(OPri)2 with a trifunctional tetradentate Schiff base (LH3) (where H3L = HOC6H4CH═NCH3C(CH2OH)2) yields the precursor complex Bu2Sn(LH) 1, which, on equimolar reactions with different metal alkoxides [Al(OPri)3, Bu3Sn(OPri), Ge(OEt)4]; Al(Medea)(OPri) (where Medea = CH3N- (CH2CH2O)2); and Me3SiCl in the presence of Et3N], affords, respectively, the complexes Bu2Sn(L)Al(OPri)2 2, Bu2Sn(L)Al(Medea) 3, Bu2Sn(L)Bu3Sn 4, Bu2Sn(L)Ge(OEt)3 5, and Bu2Sn(L)SiMe3 6. The reactions of 2 with 2,5-dimethyl-2,5-hexanediol in a 1:1 ratio and with acetylacetone (acacH) in a 1:2 molar ratio afforded derivatives Bu2Sn(L)Al(OC(CH3)2CH2CH2C(CH3)2 O) 7 and Bu2Sn(L)Al(acac)2 8, respectively. All of the derivatives 18 have been characterized by elemental analyses, molecular weight measurements, and spectroscopic [IR and NMR (1H, 119Sn, 29Si, and 27Al)] studies.  相似文献   

5.
Reactions of bis(acetylacetonato)aluminum(III)‐di‐μ‐isopropoxo‐di‐isopropoxo aluminum(III), [(CH3COCHCOCH3)2Al(μ‐OPri)2Al(OPri)2] with aminoalcohols, (HO R NR1R2) in 1:1 and 1:2 molar ratios in refluxing anhydrous benzene yielded binuclear complexes of the types [(CH3COCHCOCH3)2Al(μ‐OPri)2Al(O R NR1R2)(OPri)] and [(CH3COCHCOCH3)2Al(μ‐OPri)2Al(O R NR1R2)2] (R   (CH2)3 , R1 = R2 = H; R =  CH2C(CH3)2 , R1 = R2 = H; R =  (CH2)2 , R1 = H, R2 =  CH3; and R   (CH2)2 , R1 = R2 = CH3), respectively. All these compounds are soluble in common organic solvents and exhibit sharp melting points. Molecular weight determinations reveal their binuclear nature in refluxing benzene. Plausible structures have been proposed on the basis of elemental analysis, molecular weight measurements, IR, NMR (1H, 13C, and 27Al), and FAB mass spectral studies. 27Al NMR spectra show the presence of both five‐ and six‐coordinated aluminum sites. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:518–522, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10184  相似文献   

6.
Reactions of Zr{Al(OPri)4}2Cl2 or Zr{Nb(OPri)6}2Cl2 with KNb(OPri)6/KAl(OPri)4 and diethanolamines RN(CH2CH2OH)2 [R=H(LHH2), Me(LMeH2), and Ph(LPhH2)] in the presence of two equivalents of Et3N yield interesting hetero(bi- and tri-) nuclear derivatives (1)–(8) All of these new derivatives have been characterized by elemental analyses, molecular weight measurements, and spectroscopic studies.Ram C. Mehrotra - Deceased  相似文献   

7.
The reactions of dialumane [L(thf)Al? Al(thf)L] ( 1 , L=[{(2,6‐iPr2C6H3)NC(Me)}2]2?) with stilbene and styrene afforded the oxidation/insertion products [L(thf)Al(CH(Ph)? CH(Ph))AlL] ( 2 ) and [L(thf)Al(CH(Ph)? CH2)Al(thf)L] ( 3 ), respectively. In the presence of Na metal, precursor 1 reacted with butadienes, possibly through the reduced “dialumene” or the “carbene‐like” :AlL species, to yield aluminacyclopentenes [LAl(CH2C(Me)?C(Me)CH2)Na]n ( 4 a ) and [Na(dme)3][LAl(CH2C(Me)?CHCH2)] ( 4 b , dme=dimethoxyethane) as [1+4] cycloaddition products, as well as the [2+4] cycloaddition product 1,6‐dialumina‐3,8‐cyclodecadiene, [{Na(dme)}2][LAl(CH2C(Me)?C(Me)CH2)2AlL] ( 5 ). The possible mechanisms of the cycloaddition reactions were studied by using DFT computations.  相似文献   

8.
Zr(OPri)4·PriOH reacts with N-phenylsalicylideneimine in anhydrous benzene in 1 : 2 molar ratio to afford [Zr{O(C6H4)CH=NPh}2{OPri}2] (1). Further reactions of 1 with various glycols yield heteroleptic complexes of the type [Zr{O(C6H4)CH=NPh}2{O–G–O}] [where–G–= (CH2)2 (2), (CH2CHCH3) (3), (CH3CHCHCH3) (4), (CH2CHC2H5) (5), (CH2)3 (6), (CH2CH2CHCH3) (7), and (CH2)6 (8)]. All new derivatives have been characterized by elemental analyses, FTIR and NMR (1H and 13C{1H}) studies. FAB mass spectra of 1 and 7 revealed the monomeric nature of these complexes. Complete hydrolyses and low temperature transformations of 1 and 7 using Sol-Gel technique formed tetragonal phase of ZrO2 at 700°C, whereas transformation of tetragonal to monoclinic phase occurred at 900°C. SEM observations of these samples indicate formation of agglomerates of nanocrystalline zirconia (Scherer analysis).  相似文献   

9.
Reactions of Al(OPri)3 with LH2 =?[R′C(NYOH)CHC(R)OH] R=R′=CH3, Y =?(CH2)2 (L1H2); R =?CH3, R′ =?C6H5, Y =?(CH2)2 (L2H2); R =?R′ =?CH3, Y =?(CH2)3 (L3H2); R =?CH3, R′ =?C6H5, Y =?(CH2)3 (L4H2), in 1 : 2 molar ratio give mononuclear derivatives of aluminium AlLLH (1a1d). Equimolar reactions of AlLLH with M(OPri)3 (M =?Al and B) yield homo- and hetero-dinuclear derivatives AlLLM(OPri)2 (M=Al=2a2d M=B=3a3d). Reaction of 2a with L1H2 affords AlL1L1AlL1 (4). All these derivatives have been characterized by elemental analysis, molecular weight measurements and plausible structures have been suggested on the basis of IR, NMR [1H, 13C, 27Al and 11B] spectral data and FAB-mass studies of 2b and 3b. Schiff base L1H2 and its mononuclear derivative with aluminium (AlL1L1H) have been screened for their antibacterial activity against Escherischia coli and Bacillus subtilis.  相似文献   

10.
Ligand bridged homodinuclear derivatives of bismuth(V) of the type, (1a1d) [where R =–C(CH3)2CH2CH(CH3)–(1a),–CH(CH2CH3)CH2–(1b),–CH(CH3)CH(CH3)–(1c),–CH(CH3)CH2–(1d)] have been synthesized by reactions of equimolar oxobis(triphenylbismuth)dichloride, {[Ph3Bi]2O}Cl2 with glycols, HOROH in the presence of NaOMe. Reactions of sodiumtetraisopropoxoarsonate, NaAs(OPri)4 with in 1 : 1 molar ratio yielded homodinuclear alkoxo derivatives of arsenic(III) containing glycols, (2a2d). All compounds were characterized by elemental analysis, molecular weight determinations, IR and NMR (1H and 13C) spectral studies.  相似文献   

11.
Interesting varieties of heterobimetallic mixed-ligand complexes [Zr{M(OPri) n }2 (L)] (where M = Al, n = 4, L = OC6H4CH = NCH2CH2O (1); M = Nb, n = 6, L = OC6H4CH = NCH2CH2O (2); M = Al, n = 4, L = OC10H6CH = NCH2CH2O (3); M = Nb, n = 6, L = OC10H6CH = NCH2CH2O (4)), [Zr{Al(OPri)4}2Cl(OAr)] (where Ar = C6H3Me2-2,5 (5); Ar = C6H2Me-4-Bu2-2,6 (6), [Zr{Al(OPri)4}2(OAr)2] (where Ar = C6H3Me2-2,5 (7); Ar = C6H2Me-4-Bu2-2,6 (8), [Zr{Al(OPri)4}3(OAr)] (where Ar = C6H3Me2-2,5 (9); Ar = C6H3Me2-2,6 (10), [ZrAl(OPri)7-n (ON=CMe2) n ] (where n = 4 (11); n = 7 (12), [ZrAl2(OPri)10-n (ON=CMe2) n ] (where n = 4 (13); n = 6 (14); n = 10 (15) and [Zr{Al(OPri)4}2{ON=CMe(R)} n Cl2–n] [where n = 1, R = Me (16); n = 2, R = Me (17); n = 1, R = Et (18); n = 2, R = Et (19)] have been prepared either by the salt elimination method or by alkoxide-ligand exchange. All of these heterobimetallic complexes have been characterized by elemental analyses, molecular weight measurements, and spectroscopic (I.r., 1H-, and 27Al- n.m.r.) studies.  相似文献   

12.
    
Equimolar interaction of VO(OPri)3 with N-phenyldiethanolamine (H2L) affords the dimeric complex [VO(L)((μ-OPri)]2 (1), which on reaction with different glycols yields a new class of oxovanadium(V) complexes of the type: VO(L)(OGOH) (where L = C6H5N(CH2CH2O-)2 and G = G1 (CMe2CH2 CH2CMe2)2, G2(CHMeCH2CMe2)3, G3(CH2CMe2CH2)4, G4(CH2CEt2CH2)5, G5(CHMeCHMe)6, G6(CMe2CMe2)7), featuring 2N-phenyldiethanolaminate and glycolate moieties. Complexes (2)–(7) react with Al(OPri)3 to afford novel heterobimetallic coordination complexes of the type: VO(L)(OGO) Al(OPri)2 (G = G1-G6). All these complexes have been characterised by elemental analyses and molecular weight measurements. Spectroscopic (IR, UV-Vis and1H,27Al,51V) NMR) properties of the new complexes have been investigated and their plausible structures suggested. Dedicated to the memory of our mentor, the late Prof. R C Mehrotra  相似文献   

13.
ZrCl4 reacts with the potassium salt of the bifunctional tridentate Schiff base HOC6H4C(H)=NCH2CH(Me)OH (LH2) in a 1:1 molar ratio in benzene to give a new complex Zr(L)Cl2 which, on reaction with different potassium isopropoxymetallates [e.g., KAl(OPr i )4, KTi(OPr i )5, and KNb(OPr i )6], yield novel heterobimetallic derivatives. These new homo and heteronuclear coordination compounds have been characterized by elemental (N, Cl, Al, Ti, and Nb) analyses, molecular weight (ebullioscopic) measurements and spectral [i.r., n.m.r. (1H, 13C and 27Al)] studies and probable structures for them have been suggested.  相似文献   

14.
Abstract

The reactions of either PhPCl2 or PCl3 with (Me3Si)2NLi followed by H2C[dbnd]CHMgBr were used to prepare the new P-vinyl substituted [bis(trimethylsilyl)amino]phosphines, (Me3Si)2NP(R)CH[dbnd]CH2 [1: R=Ph, 2: CH[dbnd]CH2, 3: R=Me, and 4: R=N(SiMe3)2]. Oxidative bromination of phosphines 3–1 afforded the P-bromo-P-vinyl-N-(trimethylsilyl)phosphoranimines, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)Br [5: R=Ph, 6: R=CH[dbnd]CH2, 7: R=Me], which, upon treatment with CF3CH2OH/Et3N, were subsequently converted to the P-trifluoroethoxy derivatives, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)OCH2CF3 [8: R=Ph, 9: R=CH[dbnd]CH2, 10: R=Me]. Compounds 1–10, which are of interest as potential precursors to P-vinyl substituted poly(phosphazenes), were fully characterized by elemental analyses (except for the thermally unstable P-Br derivatives 5–7) and NMR spectroscopy (1H, 13C, and 31P) including complete analysis of the vinylic proton splitting patterns via HOM2DJ experiments.  相似文献   

15.
Equimolar reactions of BuSn(OPri)3 with diethanolamines, RN(CH2CH2 OH) 2 (abbreviated as RdeaH2, where R = H or Me), afford dimeric isopropoxo-bridged six-coordinate butyltin(IV) complexes [{Bu(η3-Rdea)Sn(μ-OPri)}2] (R = H ( 1 ), Me ( 2 )). Interactions between BuSn(OPri)3 and diethanolamines (RdeaH2) in a 1:2 molar ratio yield monomeric derivatives of the type [BuSn(Rdea)(RdeaH)] (R = H ( 3 ), R = Me ( 4 )). These homometallic complexes on 1:1 reactions with an appropriate metal alkoxide form monomeric heterobimetallic complexes of the type [BuSn (Rdea)2 {M(OR′)n}] (R = H, M = Al, R′ = Pri, n = 2 ( 5 ); R = H, M = Ti, R = Pri, n = 3 ( 6 ); R = H, M = Zr, R′ = Pri, n = 3 ( 7 ); R = Me, M = Al, R′ = Pri, n = 2 ( 8 ); R = Me, M = Ti, R′ = Pri, n = 3 ( 9 ); R = Me, M = Ge, R′ = Et, n = 3 ( 10 )). The driving force behind this work was (i) to explore the utility of homometal complexes ( 1 ) ( 4 ) in assembling a metal alkoxide fragment via a condensation reaction and (ii) to gain insights into the structures of new compounds by NMR spectral data. All of these derivatives have been characterized by elemental analysis, spectroscopic (IR, NMR; 1H, 27Al, and 119Sn) studies, and molecular weight measurements. 119Sn NMR spectral studies indicate that both the homometallic ( 3 ) and ( 4 ) and heterobimetallic ( 5 ) ( 9 ) complexes exist in a solution in an equilibrium of six- and five-coordinated tin(IV) species.  相似文献   

16.
New heterotrimetallic alkoxide [{Cd(OPri)3}Sr{Zr2(OPri)9}]2 (1) is obtained quantitatively in an anion-exchange reaction involving well-characterised iodide heterobimetallic alkoxide ICd{Zr2(OPri)9} and the alkali metal reagent KSr(OPri)3. The formation of 1 is accompanied with an exchange of metals (Cd(II) and Sr(II)) between the constituting fragments (‘Cd{Zr2(OPri)9}+’ and ‘Sr(OPri)3 ?’) and the chelating Zr2(OPri)9 ? anion, in 1, coordinates to Sr2+ in contrast to the precursor ICdZr2(OPri)9 where it is bound to Cd2+. The heterotrimetallic nature of 1 is unambiguously established by multinuclear (1H, 13C and 113Cd) NMR spectral data and a single crystal X-ray diffraction analysis.  相似文献   

17.
A reaction of activated silicon with alcohols in an autoclave at 240—270 °C was studied. It was found that primary alcohols form tetraalkoxysilanes Si(OR)4 with high selectivity (up to 97%), while the secondary PriOH gave a mixture of compounds HSi(OPri)3, Si(OPri)4, HSi(OPri)2OSi(OPri)2H, HSi(OPri)2OSi(OPri)3, and Si(OPri)3OSi(OPri)3 with the predominance of trialkoxysilane (up to 67%). Carrying out the reaction under the indicated conditions has the advantage of experimental simplicity, reagent availability, high conversion of silicon, good isolated yields of products.  相似文献   

18.
Modifying the β‐diketimine ligand LH 1 (LH=[ArN?C(Me)? CH?C(Me)? NHAr], Ar=2,6‐iPr2C6H3) through replacement of the proton in 3‐position by a benzyl group (Bz) leads to the new BzLH ligand 2, which could be isolated in 77 % yield. According to 1H NMR spectroscopy, 2 is a mixture of the bis(imino) form [(ArN?C(Me)]2CH(Bz) 2a and its tautomer [ArN?C(Me)? C(Bz)?C(Me)NHAr] 2b. Nevertheless, lithiation of the mixture of 2a and 2b affords solely the N‐lithiated β‐diketiminate [ArN?C(Me)? C(Bz)?C(Me)? NLiAr], BzLLi 3. The latter reacts readily with GeCl2?dioxane to form the chlorogermylene BzLGeCl 4, which serves as a precursor for a new zwitterionic germylene by dehydrochlorination with LiN(SiMe3)2. This reaction leads to the zwitterionic germylene BzL′Ge: 5 (BzL′=ArNC(?CH2)C(Bz)?C(Me)NAr) which could be isolated in 83 % yield. The benzyl group has a distinct influence on the reactivity of zwitterionic 5 in comparison to its benzyl‐free analogue, as shown by the reaction of 5 with phenylacetylene, which yields solely the 1,4‐addition product 6, that is, the alkynyl germylene BzLGeCCPh. Compounds 2–8 have been fully characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single‐crystal X‐ray diffraction analyses.  相似文献   

19.
Liquid-crystalline and light-emitting poly(2-alkyne)s containing terphenyl cores with hexamethyleneoxy spacers,and cyano or n-propoxy tails -[CH3C=C(CH2)6O-terphenyl-R]n-,where R=CN,CH3PA6CN,R=OCH2CH2CH3,CH3PA6OPr,were synthesized.The effects of the substitution and terminal groups on the properties,especially the mesomorphic and optical properties of the polymers,were investigated.The disubstituted acetylene monomers (CH3A6CN,CH3A6OPr) were pre- pared through multistep reaction routes and were polymerized by WCl6-Ph4Sn in good yields (up to 82%).All the monomers and CH3PA6CN exhibited the enantiotropic SmA phase with a monolayer arrangement at elevated temperatures,whereas CH3PA6OPr formed a bilayer SmAd packing arrangement.Upon excitation at 330 nm,strong UV and blue emission peaks at 362 and 411 nm were observed in CH3PA6OPr and CH3PA6CN,respectively.The luminescent properties of CH3PA6CN and CH3PA6OPr have been improved by introducing the methyl substituted group,and the quantum yield of the polymer with cyano tail CH3PA6CN (φ= 74%) was found to be higher than that of CH3PA6OPr (φ= 60%).Compared to polyacety- lene parents,both CH3PA6OPr and CH3PA6CN showed a narrower energy gap.This demonstrated that the electrical con- ductivities of polyacetylenes could be enhanced by attaching appropriate pendants to the conjugated polyene backbones.  相似文献   

20.
Ti(OPri)4 reacts with HOSi(OtBu)3 in anhydrous benzene in 1:1 and 1:2 molar ratios to afford alkoxy titanosiloxane precursors, [Ti(OPri)3{OSi(OtBu)3}] (A) and [Ti(OPri)2{OSi(OtBu)3}2] (B), respectively. Further reactions of (A) or (B) with glycols in 1:1 molar ratio afforded six complexes of the types [Ti(OPri)(O–G–O){OSi(OtBu)3}] (1A3A) and [Ti(O–G–O){OSi(OtBu)3}2] (1B3B), respectively [where G = (CH2)2 (1A, 1B); (CH2)3 (2A, 2B) and {CH2CH2CH(CH3)} (3A, 3B)]. Both (A) and (B) are liquids while all the other products are viscous liquids which get solidified on ageing. Cryoscopic molecular weight measurements of the fresh products indicate their monomeric nature. FAB mass studies of (A) and (B) also indicate monomeric nature. However, FAB mass spectra of the two representative solids (1A) and (2B) suggest dimeric behavior of the glycolato derivatives. (A) distills at 85 °C/5 mm while other products get decomposed even under reduced pressure. TG analyses of (A), (B), (1A), and (1B) suggest formation of titania–silica materials at 200 °C for (A) and (B) and 350 °C for (1A) and (1B). The products have been characterized by elemental analyses, FTIR and 1H, 13C & 29Si-NMR techniques. All these products are soluble in common organic solvents indicating a homogenous distribution of the components on the molecular scale. The Si/Ti ratio of the oxide may be controlled easily by the composition of the starting precursors. Hydrolysis of the glycol modified derivative, (1A) by the Sol–Gel technique affords the desired homogenous titania–silica material, TiO2·SiO2 in nano-size while, the precursor (A) yields a non-stiochiometric silica doped titania material. However, pyrolysis of (A) yields nano-sized crystallites of TiO2·SiO2. All these materials were characterized by FTIR, powder XRD patterns, SEM images, and EDX analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号