首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimized molecular structures, vibrational frequencies and 1H and 13C NMR chemical shifts of acetylcholine halides (F, Cl, and Br) have been investigated using density functional theory (B3LYP) method with 6-311G(d) basis set. The comparison of their experimental and calculated IR, R and NMR spectra of the compounds has indicated that the spectra of three optimized minimum energy conformers can simultaneously exist in one experimental spectrum. Thus, it was concluded that the compounds simultaneously exist in three conformations in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles), vibrational frequencies and NMR chemical shifts for the minimum energy conformers were seen to be in a good agreement with the corresponding experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program.  相似文献   

2.
The title molecule, 2‐(4‐chlorophenyl)‐1‐methyl‐1H‐benzo[d]imidazole (C14H11ClN2), was prepared and characterized by 1H NMR, 13C NMR, IR, and single‐crystal X‐ray diffraction. The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated by using the Hartree‐Fock (HF) and density functional theory (DFT/B3LYP) method with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, and nonlinear optical (NLO) properties of the title compound were investigated by theoretical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
《Vibrational Spectroscopy》2001,25(2):133-149
Equilibrium geometries, rotational constants, harmonic vibrational frequencies, infrared intensities, Raman activities, and 1H and 13C NMR spectra were calculated for 1,2-dimethylenecyclobutane and its less stable isomer 1,3-dimethylenecyclobutane by using MP2, DFT (B3PW91), and RHF theoretical methods involving the 6-311++G7 basis set.The properties calculated theoretically have been compared with the experimental values. The internal coordinates defined for both isomers were used in the potential energy distribution (PED) analysis. The theoretical vibrational and NMR spectra form the basis to differentiate particular compounds in reaction mixture.  相似文献   

4.
A comprehensive theoretical model was designed for two new flavanols that have been reported from Glycosmis pentaphylla, differing in the placement of α-pyrone ring. The density functional theory (DFT) approach was utilized for computing different properties of these compounds to validate the experimental findings and stereochemical assignments. Electronic properties, geometric parameters, frontier molecular orbitals (FMOs), molecular electrostatic potential (MESP), and natural bond orbital analysis were performed for the first time at the PBE0-D3BJ/def2-TZVP level of theory for the compounds under study. The simulated vibrational frequencies for compounds 1 and 2 were computed and compared with the experimental results. nuclear magnetic resonance (NMR) (1H and 13C) chemical shift values were computed at the PBE0-D3BJ/def2-TZVP/SMDDMSO level of theory and showed a very good agreement with the experimental results for both the compounds. The electronic circular dichroism (ECD) and ultraviolet–visible (UV) spectra for both the compounds were obtained using time-dependent DFT in methanol, whose results exhibited excellent correlation with experimental data. The intermolecular interaction effect on geometric parameters, vibrational frequencies, and electronic properties were studied for the first time.  相似文献   

5.
Boronium cation-based ionic liquids (ILs) have demonstrated high thermal stability and a >5.8 V electrochemical stability window. Additionally, IL-based electrolytes containing the salt LiTFSI have shown stable cycling against the Li metal anode, the “Holy grail” of rechargeable lithium batteries. However, the basic spectroscopic characterisation needed for further development and effective application is missing for these promising ILs and electrolytes. In this work, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and density functional theory (DFT) calculations are used in combination to characterise four ILs and electrolytes based on the [NNBH2]+ and [(TMEDA)BH2]+ boronium cations and the [FSI] and [TFSI] anions. By using this combined experimental and computational approach, proper understanding of the role of different ion-ion interactions for the Li cation coordination environment in the electrolytes was achieved. Furthermore, the calculated vibrational frequencies assisted in the proper mode assignments for the ILs and in providing insights into the spectroscopic features expected at the interface created when they are adsorbed on a Li(001) surface. A reproducible synthesis procedure for [(TMEDA)BH2]+ is also reported. The fundamental findings presented in this work are beneficial for any future studies that utilise IL based electrolytes in next generation Li metal batteries.  相似文献   

6.
2-Azido-4-nitroimidazole and its derivatives have been synthesized for energetic material applications. The synthesized compounds were fully characterized by 1H, 13C NMR spectroscopy and elemental analysis. Most of them were determined by single crystal X-ray diffraction. The calculated densities of the compounds range between 1.71 and 1.92 g,cm-3. The calculated detonation pressures (P) for these derivatives fall in the range of 25.17 to 32.62 GPa and the detonation velocities (D) are distributed from 7.65 to 8.55 km·s-1.  相似文献   

7.
An ionic liquid (IL) containing an appended 3-chloro-2-hydroxypropyl functionality group 1-(3-chloro-2-hydroxypropyl)-3-methyl imidazolium chloride was synthesised by the reaction of N-methyl imidazole, hydrochloric acid and epichlorohydrin. The ionic liquid showed reasonably high conductivity and heat stability up to 230°C. Its structures were characterised by FT-IR, 1H NMR and 13C NMR spectra. The physical characteristics of the ionic liquid, such as conductivity and solvation abilities have been investigated. Due to its high polarity, the IL is able to dissolve many inorganic salts, and due to hydroxyl-rich microenvironment, it is able to dissolve cellulose go up to 10 (wt%). The ILs can be used for synthesising other ILs or polyelectrolyte.  相似文献   

8.
o-Carbonyl benzeneselenenyl compounds with COCH3, CHO and COOCH3 as carbonyl functions and SeCl, SeBr, SeSCN, SeSeCN, SeCN and SeCH3 as selenium-containing groups, have been studied by 1H, 13C and 77Se NMR spectroscopy. The IR CO stretching frequencies of these compounds are also reported. If the SeCH3 derivatives are excluded, the compounds mainly adopt a planar ‘cis’ conformation, due to an interaction between the CO group and the selenium atom. The range of over 800 ppm for the observed 77Se chemical shifts makes 77Se NMR spectroscopy a powerful tool for physical organic chemists.  相似文献   

9.
The paper describes the synthesis, characterization data, and biological activity (antibacterial, antifungal, and brine shrimps lethality) of new azetidin‐2‐ones. The compounds have been synthesized by the reaction of diarylketenes, generated in situ from thermal decomposition of the 2‐diazo‐1,2‐diarylethanones, with N‐(1‐methyl‐1H‐indol‐3‐yl)methyleneamines. The compounds have been characterized by elemental analysis and spectral (IR, 1H and 13C NMR, and MS) data. The paper also reports the results of antibacterial, antifungal, and brine shrimps lethality assays of these compounds. Some of the compounds exhibited significant biological activity.  相似文献   

10.
Abbas Teimouri  Mohammad Emami 《Tetrahedron》2008,64(51):11776-11782
We present a new azo reactive dye from racemic or optically active BINOL. This dye was characterized by UV-vis, FTIR, mass, 1H NMR, and 13C NMR spectroscopic techniques and elemental analysis. The structure and spectrometry of this azo dye have been investigated theoretically by performing HF and DFT levels of theory using the standard 6-31G basis set. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FTIR spectra are assigned based on the results of the theoretical calculations. The theoretical electronic absorption spectra have been calculated using CIS, TD-DFT, and ZINDO methods. In addition, a good agreement between calculated and experimental NMR data is observed.  相似文献   

11.
The MM4 force field has been extended to the title class of compounds. The vibrational spectra, structures, conformational equilibria, and heats of formation have been studied for 47 conformers of 29 compounds. In general, the properties may be calculated with accuracy that is competitive with that for hydrocarbons. The structures are better fit than previously because of the inclusion of a torsion–bend interaction term, which has its origin in the lone pair (Bohlmann) effect. Available experimental data do not suffice to yield detailed torsional potentials, or geometries as a function of torsion angle, and these quantities were determined by ab initio calculations at the MP2/6-31G* level. The rms error in the calculated frequencies of seven representative structures (with a total of 64 experimental and 96 ab initio frequencies) is 25 cm−1. The heats of formation for 23 compounds have a weighted rms error of 0.36 kcal/mol. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1827–1847, 1997  相似文献   

12.
Quantum chemical methods were used for the theoretical determination of the conformational population for the relevant conformers of cyclononane, i.e., TBC, TCB, TCC, and M4 (or C1), which have been previously investigated experimentally through detailed examination of the nuclear magnetic resonance (NMR) spectrum. Our best Gibbs free energy result, evaluated with MP4(SDTQ)/6‐31G(d,p)//MP2/6‐31G(d,p) energy differences and MP2/6‐31G(d,p) thermal corrections, lead to a temperature‐dependent population in excellent agreement with the experimental results based on the analysis of the low temperature 13C NMR spectrum. The nice agreement with experiment is achieved using MP2 harmonic frequencies for the evaluation of vibration partition functions within the standard statistic thermodynamics formalism. Theoretical temperature‐dependent infrared (IR) and 13C NMR spectra were simulated and compared with experimental data, which confirmed the ab initio conformational population reported here. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

13.
13C NMR chemical shifts have been calculated for structures of some substituted 3‐anilino‐2‐nitrobenzo‐[b]thiophenes ( 2 o) and 2‐anilino‐3‐nitrobenzo[b]thiophenes ( 3 o) derivatives containing OH, NH2, OMe, Me, Et, H, F, Cl and Br. The molecular structures were fully optimized using B3LYP/6‐31G(d,p). The calculation of the 13C shielding tensors employed the GAUSSIAN 03 implementation of the gauge‐including atomic orbital (GIAO) and continuous set of gauge transformations (CSGT) by using 6‐311++G(d,p) basis set at density functional levels of theories (DFT). The isotropic and the anisotropy parameters of chemical shielding for all compounds are calculated. The predicted 13C chemical shifts are derived from equation δ=δ0+δ where δ is the chemical shift, δ is the absolute shielding, and δ0 is the absolute shielding of the standard TMS. Excellent linear relationships have been observed between experimental and calculated 13C NMR chemical shifts for all derivatives  相似文献   

14.
The goal of this study is to determine the most stable tautomeric forms, and their ground state conformers of 4′-nitroazobenzene-2,4-diol and 4-methyl-4′-nitroazobenzene-2,6-diol compounds. The calculations have shown that the most stable tautomeric forms of the compounds are hydrazo form for 4′-nitroazobenzene-2,4-diol and azo form for 4-methyl-4′-nitroazobenzene-2,6-diol. Besides, the vibrational frequencies, 1H and 13C NMR shifts, frontier molecular orbital’s energies for the tautomeric forms of the compounds calculated by using density functional theory-B3LYP method with 6-311G(d) basis set were interpreted. All the assignments of the theoretical frequencies were identified by potential energy distribution (PED) analysis. Generally, theoretical spectral results were seen to be in a good agreement with the corresponding experimental data.  相似文献   

15.
The thermophysical properties of 1-hexyl-3-methyl imidazolium based hydrophobic room temperature ionic liquids (RTILs); with tetrafluoroborate (BF4), hexafluorophosphate (PF6), and bis(trifluoromethylsulfonyl)imide (Tf2N) anions, namely density ρ (298.15 to 348.15) K, dynamic viscosity η (288.2 to 348.2) K, surface tension σ (298.15 to 338) K, and refractive index nD (302.95 to 332.95) K have been measured. The coefficients of thermal expansion αp values were calculated from the experimental density data using an empirical correlation. The thermal stability of all ILs is also investigated at two different heating rates (10 and 20) °C · min−1) using thermogravimetric analyzer (TGA). The experimental results presented in this study reveal that the choice of anion type shows the most significant effect on the properties of ILs. The chloride and water contents of ILs (as impurities) are also investigated and reported in the present work.  相似文献   

16.

Abstract  

Two novel N-phosphinyl ureas containing different substituents were synthesized and characterized by 1H, 13C, and 31P NMR, IR, UV, mass spectroscopy, and elemental analysis. The crystal structures of these compounds were determined by X-ray crystallography. The structure of one compound exhibits the presence of two independent forms of the molecule with equal occupancy in the lattice and theoretical data reveal the same stabilization energies for these conformers. The title molecules have anti conformation with respect to the C=O and P=O bonds, whereas the other compound shows syn configuration. Quantum chemical calculations were applied to clarify this conformational behavior. Furthermore, the molecular geometry and vibrational frequencies of the new derivatives in the ground state were calculated by using the Hartree–Fock (HF) and density functional method (B3LYP) with 6-31+G** and 6-311+G** basis sets and compared with experimental values. The new derivatives were additionally tested in view of their antibacterial properties.  相似文献   

17.
Results of our studies on polymerization kinetics and tests of copolymerization statistical models of ethylene-norbornene (E-N) copolymers obtained on the basis of microstructures determined by 13C NMR analysis are reported. Ethylene-norbornene (E-N) copolymers were synthesized by catalytic systems composed of racemic isospecific metallocenes, i-Pr[(3Pri-Cp)(Flu)]ZrCl2 or a constrained geometry catalyst (CGC) and methylaluminoxane. Polymerization kinetics revealed that E-N copolymerization is quasi living under standard polymerization conditions. Calculations of the number of active sites and of chain propagation and chain transfer turnover frequencies indicate that the metal is mainly in the Mt-N* state, while the Mt-E* state contributes more to transfer and propagation rates. The first-order and the second-order Markov statistics have been tested by using the complete tetrad distribution obtained from 13C NMR analysis of copolymer microstructures. The root-mean-square deviations between experimental and calculated tetrads demonstrate that penultimate (second-order Markov) effects play a decisive role in E-N copolymerizations. Results show clues for more complex effects depending on the catalyst geometry in copolymers obtained at high N/E feed ratios. Comonomer concentration was shown to have a strong influence on copolymer microstructure and copolymer properties. The copolymer microstructure of alternating isotactic copolymers obtained with i-Pr[(3Pri-Cp)(Flu)]ZrCl2 have been described at pentad level. Second-order Markov statistics better describes also the microstrucure of these copolymers.  相似文献   

18.
High density energetic salts containing nitrogen‐rich cations and the nitranilic anion were readily synthesized in high yield by metathesis reactions of sodium nitranilate 2 and an appropriate halide. All of the new compounds were fully characterized by elemental, spectral (IR, 1H, 13C NMR), and thermal (DSC) analyses. The structure of hydrazinium nitranilate ( 4 ) was also determined by single‐crystal X‐ray analysis. The high symmetry and oxygen content of the anion give these salts extensive hydrogen bonding capability which further results in the high densities, low water solubilities, and high thermal stabilities (Td> 200 °C) of these compounds. Theoretical performance calculations were carried out by using Gaussian 03 and Cheetah 5.0. The calculated detonation pressures (P) for these new salts fall between 17.5 GPa ( 10 ) and 31.7 GPa ( 4 ), and the detonation velocities (νD) range between 7022 m s?1 ( 13 ) and 8638 m s?1 ( 4 ).  相似文献   

19.
A number of ionic chelate complexes of maltol(A) and hafnium(IV) the type[(η5−C5H5)2HfL]+[MCl3] (B) [HL=maltol; M=Zn(II), Cd(II), Hg(II), Cu(II)]have been synthesized and characterized by spectral studies (IR, UV, 1H NMR and 13C NMR). The stoichiometry of the complexes has been confirmed by conductance measurements. Thermogravimetric (TG) and differential thermal analytical (DTA) studies have been carried out for these complexes and from TG curves, the order, apparent activation energy and apparent activation entropy of the thermal decomposition reactions have been elucidated .The order in each case has been determined to be one and the degree of spontaneity and lability have been inferred from the apparent activation energy and entropy, respectively. Thermal parameters have been correlated with some structural aspects of the complexes concerned. From differential thermal analysis curves, the heat of reaction has been calculated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The IR and Raman spectra of aminomethylene propanedinitrile (AM) [H2N-CH=C(CN)2], (methylamino)methylene propanedinitrile (MAM) [CH3NH-CH=C(CN)2] and (dimethylamino)methylene propanedinitrile (DMAM) [(CH3)2N-CH=C(CN)2] as solids and solutes in various solvents have been recorded in the region 4000-50 cm–1. AM and DMAM can exist only as one conformer. From the vibrational and NMR spectra of MAM in solutions, the existence of two conformers with the methyl group orientedanti andsyn toward the double C=C bond were confirmed. The enthalpy difference H 0 between the conformers was measured to be 3.7±1.4 kJ mol–1 from the IR spectra in acetonitrile solution and 3.4±1.1 kJ mol–1 from the NMR spectra in DMSO solution. Semiempirical (AM1, PM3, MNDO, MINDO3) and ab initio SCF calculations using a DZP basis set were carried out for all three compounds. The calculations support the existence of two conformersanti andsyn for MAM, withanti being 7.8 kJ mol–1 more stable thansyn from ab initio and 8.6, 13.4, 11.6, and 10.8 kJ mor–1 from AM1, PM3, MNDO, and MINDO3 calculations, respectively. Finally, complete assignments of the vibrational spectra for all three compounds were made with the aid of normal coordinate calculations employing scaled ab initio force constants. The same scale factors were optimized on the experimental frequencies of all three compounds, and a very good agreement between calculated and experimental frequencies was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号