首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nongeminally substituted cyclic phosphazenes with various haloalkyl substituents were prepared using deprotonation-substitution reactions at the methyl groups of the cis isomers of nongeminally substituted cis-[Me(Ph)P=N]3, 2. Treatment of 2 with n-BuLi followed by reaction with organic halogenated reagents (RX=C2Cl6, BrC(O)CMe2Br, and ICH2COOEt) at low temperature afforded the various cyclic derivatives cis-[(XCH2)(Ph)PN]3 (3, X=Cl, 4, Br, and 5, I). The mono- and dibromoalkyl derivatives, cis-[Ph3(BrCH2)Me2P3N3], 6, and [Ph3(BrCH2)2MeP3N3], 7, were also isolated along with 4 when the electrophile was dibromoethane. Reaction of cis-[Ph(BrCH2)PN]3, 4, with KSC(O)Me gave cis-[Ph(MeC(O)SCH2)PN]3, 8. The structures of all the cis cyclic phosphazenes were determined by NMR spectroscopy and X-ray diffraction. All retained the basketlike shape with the hydrophobic phenyl groups opposite the haloalkyl groups on the P3N3 ring. Thermal analysis of the new cyclic trimers indicates that ring-opening polymerization does not occur. The melting points and the thermal stabilities of haloalkyl cyclophosphazenes were higher than those of the parent compound 2.  相似文献   

2.
The reactions of Me(3)SiN=P(OR")RR'(R" = Ph, CH(2)CF(3); R, R' = Me, Ph) with alcohols were investigated. With nonequivalent amounts of CF(3)CH(2)OH, the reactions produced high yields of the cyclic phosphazene (Me(2)PN)(3) and both the cis and trans isomers of nongeminally substituted [(Ph)(Me)PN](3). The isomers of this new cyclic phosphazene were separated by column chromatography and characterized by NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Crystals of the cis isomer 6a have a monoclinic crystal system, while the trans isomer 6b has a triclinic crystal system with two different molecules in an asymmetric unit. The bond lengths and bond angles are very similar to those of the simpler cyclic trimers (Me(2)PN)(3) and (Ph(2)PN)(3.) A likely pathway for the formation of these compounds is discussed.  相似文献   

3.
Heating pure samples of the cyclic phosphazenes, cis- or trans-[Me(Ph)PN](3), yielded mixtures of the cis and trans isomers of the cyclic phosphazene trimers, [Me(Ph)PN](3), and all four geometric isomers of the tetramers, [Me(Ph)PN](4). Varying the temperature and heating times changes the ratio of these components. Following the thermolysis by NMR spectroscopy indicated that only a mixture of the two isomeric trimers occurred initially. Longer heating times produced mixtures of the isomers of the tetramer. Column chromatography and solubility differences were used to separate each of the isomers of the tetramer. Spectroscopic and X-ray crystallographic studies suggest that the four different geometrical isomers of the tetramer can be described as cone, partial cone, 1,2-alternate, and 1,3-alternate by analogy to calix[4]arene.  相似文献   

4.
Silicon-nitrogen-phosphorus compounds of the type Me 3 SiN═PR(R′)X(X= Cl, Br, OCH2CF 3 , OPh), known as N-silylphosphoranimines,are useful precursors to both cyclic and polymeric phosphazenes.Depending on the leaving group (X), thermolysis reactions afford either cyclic trimers, [N═PR(R′)] 3 (when X = Cl, Br), or linear polymers,[N═PR(R′)]n (when X = OCH 2 CF 3 or OPh). Treatment of the P-trifluoroethoxy and P-phenoxy derivatives, Me 3 SiN═PR(R′)X (X = OCH 2 CF 3 , OPh), with alcohols at lower temperature usually results in the formation of cyclic phosphazene trimers via silyl ether elimination. Recently, we have applied these synthetic methods to the preparation of some new phosphazene systems including a series of 4-aryl-functionalized trimers and polymers and a variety of non-geminal, mixed-substituent cyclic trimers. Representative examples of the synthesis, structural characterization, and reactivity of these new phosphazenes and their Si─N─P precursors are reported here.  相似文献   

5.
The reaction of (R(2)PCH(2)SiMe(2))(2)NM (PNP(R)M; R = Cy; M = Li, Na, MgHal, Ag) with L(2)ReOX(3) [L(2) = (Ph(3)P)(2) or (Ph(3)PO)(Me(2)S); X = Cl, Br] gives (PNP(Cy))ReOX(2) as two isomers, mer,trans and mer,cis. These compounds undergo a double Si migration from N to O at 90 degrees C to form (POP(Cy))ReNX(2) as a mixture of mer,trans and fac,cis isomers. Additional thermolysis effects migration of CH(3) from Si to Re, along with compensating migration of halide from Re to Si. DFT calculations on various structural isomers support the greater thermodynamic stability of the POP/ReN isomer vs PNP/ReO and highlight the influence of the template effect on the reactivities of these species.  相似文献   

6.
A mixture of cis,trans-1-bromo-2-butene was reacted with (CpMoS)2S2CH2 (Cp=C5H5) to form the cationic sulfur-alkylated product [(CpMo)2(S2CH2)(μ-S)(μ-SCH2CH=C(H)Me]Br, (1), which was characterized by spectroscopic methods. The reactivity of the allyl thiolate complex was compared with that of [(CpMo)2(S2CH2)(μ-S)(μ-SCMe=CHMe)]Br, (2), an isomer with a vinyl thiolate ligand. Complex 1 does not undergo detectable isomerization in chloroform solution while a complex rearrangement process was observed for 2. The reaction of 1–2 atm of hydrogen with 1 resulted in the formation of 2-bromobutane and a previously characterized molybdenum complex [CpMoS2CH2]2. [(CpMo)2(S2CH2)(μ-S)(μ-SCHMe( Et))]Br was an intermediate in this reaction with hydrogen. It was detected by NMR and synthesized by an independent route. The reaction of methyl lithium with 1 led to the formation of a neutral complex (CpMo)2(S2CH2)(μ-SMe)(μ-SCH2CH=CHMe), (3). Complex 3 reacted under 1–2 atm of hydrogen to form an isomeric mixture of butenes. The nature of the molybdenum products which were isolated from this reaction suggested that homolytic cleavage of the carbon sulfur bond in the allyl thiolate ligand had occurred. Possible reaction pathways for the transformations of 1 and 3 under hydrogen are discussed.  相似文献   

7.
The ability of [PtX2(Me2phen)] (Me2phen = 2,9-dimethyl-1,10-phenanthroline, X = Cl, Br, I) to act as olefin scavengers, easily giving stable trigonal bipyramidal five-coordinated platinum species [PtX2(Me2phen)(η2-olefin)], has been checked toward [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)], a cyclopentadienyl complex containing an olefinic function introduced by ring methyl activation in the pentamethylcyclopentadienyl iridium(III) complex [(C5Me5)Ir(Me)(CO)(Ph)]. The reaction of [PtI2(Me2phen)] with [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)] results in the formation of the heterometallic binuclear complex [PtI2(Me2phen){(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)}] which is stable and has been completely characterized by elemental analysis, 1H, 13C, and 195Pt NMR spectroscopy.  相似文献   

8.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

9.
The 1‐azonia‐2‐boratanaphthalenes (NH)(BX)C8H6 can be synthesized from 2‐aminostyrene and the dihaloboranes XBHal2 ( 1 ‐ 4 : X = Cl, Br, iPr, tBu). Further derivatives (NH)(BX)C8H6 are obtained from 1 by replacing Cl by alkoxy or alkyl groups [ 5 ‐ 8 : X = OMe, OtBu, Me, (CH2)3NMe2]. The hydrolysis of 1 gives a mixture of the bis(azoniaboratanaphthyl) oxide [(NH)BC8H6]2O ( 9 ) and the hydroxy derivative (NH)[B(OH)]C8H6 ( 10 ). The diboryl oxide 9 crystallizes in the space group C2/c. The lithiation of 4 at the nitrogen atom gives [NLi(tmen)](BtBu)C8H6 ( 11 ), which upon reaction with the diborane(4) B2Cl2(NMe2)2 yields the 1, 2‐bis(azoniaboratanaphthyl)diborane B2[N(BtBu)C8H6]2(NMe2)2 ( 12 ). The 2‐chloro‐1‐methyl‐4‐phenyl derivative (NMe)(BCl)C8H5Ph ( 13 ) of the parent (NH)(BH)C8H6 can be synthesized from the aminoborane BCl2(NMePh) and phenylethyne. Substitution of Cl in 13 gives the derivatives (NMe)(BX)C8H5Ph [ 14 ‐ 20 : X = N(SiMe3)2, Me, Et, iBu, tBu, CH2SiMe3, Ph] and the reaction of 13 with Li2O affords the bis(azoniaboratanaphthyl) oxide [(NMe)BC8H5Ph]2O ( 21 ). The reaction of 16 or 19 with [(MeCN)3Cr(CO)3] yields the complexes [{(NMe)(BX)C8H5Ph}Cr(CO)3] ( 22 , 23 : X = Et, CH2SiMe3), in which the chromium atom is hexahapto bound to the homoarene part of 16 or 19 , respectively. The complex 23 crystallizes in the space group P21/c. Upon reaction of the phenols para‐C6H4R(OH) with the aryldichloroboranes ArBCl2 and subsequent condensation of the products with phenylethyne, the 1‐oxonia‐2‐boratanaphthalenes O(BAr)C8H4RPh with R in position 6 and Ph in position 4 are formed ( 24 ‐ 26 : Ar = Ph, R = H, Me, OMe; 27 ‐ 29 : Ar = C6F5, R = H, Me, OMe). The azoniaboratanaphthalenes 1 ‐ 23 were characterized by NMR methods.  相似文献   

10.
Directed tridentate Lewis acids based on the 1,3,5‐trisilacyclohexane skeleton with three ethynyl groups [CH2Si(Me)(C2H)]3 were synthesised and functionalised by hydroboration with HB(C6F5)2, yielding the ethenylborane {CH2Si(Me)[C2H2B(C6F5)2]}3, and by metalation with gallium and indium organyls affording {CH2Si(Me)[C2M(R)2]}3 (M=Ga, In, R=Me, Et). In the synthesis of the backbone the influence of substituents (MeO, EtO and iPrO groups at Si) on the orientation of the methyl group was studied with the aim to increase the abundance of the all‐cis isomer. New compounds were identified by elemental analyses, multi‐nuclear NMR spectroscopy and in some cases by IR spectroscopy. Crystal structures were obtained for cis‐trans‐[CH2Si(Me)(Cl)]3, all‐cis‐[CH2Si(Me)(H)]3, all‐cis‐[CH2Si(Me)(C2H)]3, cistrans‐[CH2Si(Me)(C2H)]3 and all‐cis‐[CH2Si(Me)(C2SiMe3)]3. A gas‐phase electron diffraction experiment for all‐cis‐[CH2Si(Me)(C2H)]3 provides information on the relative stabilities of the all‐equatorial and all‐axial form; the first is preferred in both solid and gas phase. The gallium‐based Lewis acid {CH2Si(Me)[C2Ga(Et)2]}3 was reacted with a tridentate Lewis base (1,3,5‐trimethyl‐1,3,5‐triazacyclohexane) in an NMR titration experiment. The generated host–guest complexes involved in the equilibria during this reaction were identified by DOSY NMR spectroscopy by comparing measured diffusion coefficients with those of the suitable reference compounds of same size and shape.  相似文献   

11.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

12.
Abstract

The reactions of a variety of electrophiles with the N-silyl-P-trifluoroethoxyphosphoranimine anion Me3Sin°P(Me)(OCH2CF3)CH? 2 (1a), prepared by the deprotonation of the dimethyl precursor Me3SiN[dbnd]P(OCH2CF3)Me2 (1) with n-BuLi in Et2O at-78°C, were studied. Thus, treatment of 1a with alkyl halides, ethyl chloroformate, or bromine afforded the new N-silylphosphoranimine derivatives Me3SiN[dbnd]P(Me)(OCH2CF3)CH2R [2: R = Me, 3: R = CH2Ph, 4: R = CH[sbnd]CH2, 5: R = C(O)OEt, and 6: R = Br]. In another series, when 1a was allowed to react with various carbonyl compounds, 1,2-addition of the anion to the carbonyl group was observed. Quenching with Me3SiCl gave the O-silylated products Me3SiN[dbnd]P(Me)(OCH2CF3)CH2°C(OSiMe3)R1R2 [7: R 1 = R 2 = Me; 8: R 1 = Me, R 2 = Ph; 9: R1 = Me, R 2 = CH[sbnd]CH2; and 10: R 1 = H, R 2 = Ph]. Compounds 2–10 were obtained as distillable, thermally stable liquids and were characterized by NMR spectroscopy (1H, 13C, and 31P) and elemental analysis.  相似文献   

13.
The synthesis of new tripodal nitrogen ligands derived from tris(pyrazolyl)methane (TpmR, R = H, tBu, Ph in 3‐position) is described. After deprotonation of the parent tris(pyrazolyl)methane TpmR, the carbanion reacts readily with ethylene oxide to yield the 3,3,3‐tris(3′‐substituted pyrazolyl)propanol ligands[(3‐Rpz)3CCH2CH2OH, R = H, tBu, Ph, 1a – c ]. These ligands can be easily derivatised at the alcohol function. Microwave‐assisted reactions of these ligands and [Re(CO)5Br] yields the complex [( 1a )Re(CO)3]Br ( 4 ) in the case of ligand 1a , whereas in the case of the substituted ligands 1b and 1c degradation was observed. The degradation products are identified as [(HpzR)2Re(CO)3Br] [R = tBu ( 7b ), Ph ( 7c )]. These complexes were also prepared directly from [Re(CO)5Br] and the corresponding pyrazoles by microwave‐assisted synthesis. The Re(CO)3 complexes 4 and [( 1a )Re(CO)3]OTf ( 5 ) are water‐soluble. The structures of 5· H2O and [{(pz)3CCH2CH3}Re(CO)3]OTf · 1.5H2O · 1/2CH3CN ( 6· 1.5H2O · 1/2CH3CN) as well as the structure of 7b have been elucidated by X‐ray crystallography.  相似文献   

14.

Alkytris(2-pyridyl)phosphonium salts [(2-Py) 3 PR]X 1 [1a, R = Et, X = Br; 1b, R = Pr, X = Br; 1c, R = Bu, X = Br; 1d, R = CH2Ph, X = Br; 1e, R = CH 2 Ph, X = Cl] were synthesised from (2-Py) 3 P and an excess of RCl. 1c and 1e were found to rapidly decompose in hot acetone to 2,2′-bipyridinium(+1) bromide 2 and (2-Py)P(O)(CH 2 Ph)C(OH)Me 2 3, respectively. A reaction mechanism for both products is proposed. All compounds were fully characterized, including X-ray crystallography for 1a and 3 with 1a being the first representative of this class of compounds characterized by this technique.  相似文献   

15.
Reactions of the dilithiated diols RCH2P(S)(CH2OLi)2 [R = Fc (1), Ph (2) (Fc = ferrocenyl)] with N3P3F6 in equimolar ratios at -80 degrees C result exclusively in the formation of two structural isomers of ansa-substituted compounds, endo-RCH2P(S)(CH2O)2[P(F)N]2(F2PN) [R = Fc (3a), Ph (4a)] and exo-RCH2P(S)(CH2O)2[P(F)N]2(F2PN) [R = Fc (3b), Ph (4b)], which are separated by column chromatography. Increasing the reaction temperature to -40 degrees C results in more of the exo isomers 3b and 4b at the expense of the endo isomers. The formation of the ansa-substituted compounds is found to depend on the dilithiation of the diols, as a reaction of the silylated phosphine sulfide FcCH2P(S)(CH2OSiMe3)2 (5) with N3P3F6 in the presence of CsF does not yield either 3a or 3b but instead gives the spiro isomer [FcCH2P(S)(CH2O)2 PN](F2PN)2 (6) as the disubstitution product of N3P3F6. The ansa isomers 3a and 3b are transformed into the spiro compound 6 in the presence of catalytic amounts of CsF at room temperature in THF, while 4a and 4b are transformed into the spiro compound [PhCH2P(S)(CH2O)2PN](F2PN)2 (7) under similar conditions. The novel conversions of ansa-substituted phosphazenes into spirocyclic phosphazenes were monitored by time-dependent 31P NMR spectroscopy. The effect of temperature on a transformation was studied by carrying out reactions at various temperatures in the range from -60 to +33 degrees C for 3b. In addition, compounds 3a, 3b, 4a, and 6 were structurally characterized. In the case of the ansa compounds, the nitrogen atom flanked by the bridging phosphorus sites was found to deviate significantly from the plane defined by the five remaining atoms of the phosphazene ring.  相似文献   

16.
Hydroalumination or hydrogallation of tri(ethynyl)silanes, RSi(C≡C‐Ar)3 ( 1a , R = Ph, Ar = Ph; 1b , R = Me, Ar = Ph; 1c , R = Me, Ar = C6H4Me), with the element hydrides H‐EtBu2 (E = Al, Ga) in stoichiometric ratios of 1:1 to 1:3 at ambient temperature yielded the addition products (PhC≡C)2(R)Si[(tBu2E)C=C(H)Ph] ( 2 , R = Ph, E = Ga; 3a , R = Me, E = Al; 3b , R = Me, E = Ga), (PhC≡C)(Me)Si[(tBu2E)C=C(H)Ph]2 ( 4a , E = Al, 4b , E = Ga) and (Me)Si[(tBu2Al)C=C(H)Ar]3 ( 5 , Ar = Ph; 6 , Ar = C6H4Me). Compounds 2 – 4 show a relatively close interaction between the coordinatively unsaturated aluminium or gallium atoms and one of the Cα(≡C) atoms of unreacted alkyne substituents [245 (E = Al) and 266 pm (E = Ga)] that stabilises the kinetically favoured cis addition products with E and hydrogen on the same side of the resulting C=C double bonds. In the absence of these stabilising effects the compounds were found to isomerise to the thermodynamically favoured trans isomers.  相似文献   

17.
The reaction of dialkanolamines RN(CH2CH2O)(CHR’CHR’OH) (R = Me, Ph, PhCH2; R’ = H, Ph) with tetraethoxygermane gives either 2,2-diethoxy-1,3,6,2-dioxazagermocanes RN(CH2CH2O)(CHR’CHR’O)Ge(OEt)2 or 1,7,9,15-tetraoxa-4,12-diaza-8-germaspiro[7.7]pentadecanes [RN(CH2CH2O) (CHR’CHR’O)]2Ge depending on the reactant ratio. The chemical behavior of the obtained compounds in substitution reactions at germanium was studied. The product structure was confirmed by elemental analysis data and 1H, 13C, and 19F NMR spectroscopy. The cyclotrigermanoxane [MeN(CH2CH2O)2GeO]3 was studied by X-ray diffraction.  相似文献   

18.
This work investigates effects of poly(γ-butyrolactone) (PγBL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain-end-capped polymers with similar molecular weights, BnO-[C(=O)(CH2)3O]n-R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O-[C(=O)(CH2)3O]n-H (R′ = Bn, Ph2CHCH2) with Mn ranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain-end capping renders R-protected linear PγBL behaving much like cyclic PγBL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2271–2279  相似文献   

19.
The deprotonation-substitution reactions of both the cis and trans isomers of nongeminally substituted [(Me)(Ph)P=N](3) were investigated. Treatment of the trans isomer, 1, with 3 equiv of n-BuLi followed by 3 equiv of MeI gave only nongeminal trans-[(Et)(Ph)P=N](3), 3, while the same reaction sequence on cis-[(Me)(Ph)P=N](3), 2, gave a mixture of nongeminal di- and trisubstitution products, cis-Et(2)MePh(3)P(3)N(3), 4, and cis-Et(3)Ph(3)P(3)N(3), 5. These trimers were separated by column chromatography. No changes in the stereochemistry of the rings occurred during these reactions. Compound 4 was also prepared using 2 equiv of the reactants and was then converted to 5 by treatment with a single equivalent of BuLi and MeI. Thermal analysis of the new cyclic trimers indicates that ring-opening polymerization does not occur and that sublimation occurs at ca. 300 degrees C. The structures of 4 and 5, obtained by X-ray diffraction, illustrate the basketlike shape of these molecules with an aromatic bowl formed by the phenyl rings on the top rim, while the structure of 3 clearly shows the trans orientation of the substituents. Crystal data for trans-Et(3)Ph(3)P(3)N(3), 3, at 20 degrees C are as follows: C(24)H(30)N(3)P(3) monoclinic, a = 14.273(2) A, b = 9.370(2) A, c = 19.600(3) A, beta = 107.16(1) degrees, P2(1/n), Z = 4. Crystal data for cis-Et(2)MePh(3)P(3)N(3), 4, at 20 degrees C are as follows: C(23)H(28)N(3)P(3), triclinic, a = 10.276(2) A, b = 10.699(2) A, c = 11.925(2) A, alpha = 72.07(2) degrees, beta = 73.79(1) degrees, gamma = 85.87(1) degrees, P1, Z = 2. Crystal data for cis-Et(3)Ph(3)P(3)N(3), 5, at 20 degrees C are as follows: C(24)H(30)N(3)P(3) monoclinic, a = 29.488(2) A, b = 9.8391(1) A, c = 21.172(2) A, beta = 126.30(1) degrees, C2/c, Z = 8.  相似文献   

20.
Benzylchlorobis(triphenylphosphine)palladium(II) reacted with dimethyl acetylenedicarboxylate to give [Pd[C(CO2Me)=C(CH2Ph)(CO2Me)]Cl(PPh3)2] (II) and [(Ph3P)ClPdμ-C(CO2Me)=C(CO2Me)PdCl(PPh3) (III). Complexes II and III reacted with Tl(acac) to afford [PdC(CO2Me=C(CH2Ph)(CO2Me)-(acac)(PPh3)] and [(Ph3P)(acac)Pdμ-C(CO2Me)=C(CO2Me)Pd(acac)(PPh3)], respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号