首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions occurring between a new class of cavitands that carry up to four dioxaphosphocin binding units and alkyl- and arylammonium ions was investigated by liquid secondary-ion mass spectrometry (LSIMS). As the cavitands existed as distinct diastereomers with different spatial orientation of their binding groups, these geometrical differences proved to have a dramatic influence on their chemical properties, including their ability to form host-guest complexes. In practice, only the cavitands that carry at least three P=O groups oriented toward the inside of the cavity were demonstrated to be strong ligands toward organic ammonium ions, whereas those with only two converging binding groups (either adjacent or opposite in the cavitand structure) still formed host-guest complexes, but they were much weaker. Adjacent binding sites proved to be more effective in interacting with organic ammonium ions than those lying in opposite positions. The isomers with no converging P=O groups did not act as molecular receptors. Even the isomer with one group oriented toward the inside of the cavity did not form host-guest complexes, as the absence of synergistic hydrogen bonding made the interaction from inside the cavity energetically equivalent (or even less favorable) to the outside binding. The presence in the cavitand structure of substituents with an electron-donating character proved to increase the proton affinity of the P=O binding groups and, consequently, their binding energy. The strong proton affinity of the cavitands led to the formation of stable host-guest complexes, as confirmed by the collisionally activated dissociation experiments. Effects of steric hindrance were weak, at least for the cavitands with three converging P=O groups. This confirmed that the cavity has a wide and readily accessible opening. The relative complexation constants were measured for the various guests, yielding scales of relative affinity toward each cavitand. These relative constants may represent thermodynamic values referred to the matrix used in LSIMS experiments, namely 3-nitrobenzyl alcohol (NBA), provided that kinetically controlled selvedge processes are negligible. Absolute complexation constants could not be obtained on account of the unknown pH and the protonation constant in the NBA matrix.  相似文献   

2.
The sensing properties of functionalized cavitands have been studied by thin-film coating TMSR chemical sensors and by measuring their responses towards model analytes. We studied the relationship between the sensor performance, in terms of sensitivity and selectivity, and the molecular recognition properties of the cavitands. The Langmuir-like shape of the adsorption isotherm, obtained in the case of short-chain alcohols, demonstrated that selective binding can be achieved by the synergistic interactions of the cavity and the bridging PO(in) groups. In the absence of these substituents, the peripheral alkyl chains necessary for the formation of highly permeable thin films attenuate the cavity effect because of nonspecific dispersion interactions. This completely overrides the response originating from molecular recognition. The same effect is observed when the PO groups are oriented outward from the cavity. The use of multivariate chemometrics and the study of the correlations between sensors sensitivity and analyte properties provided further evidence of molecular recognition phenomena, whose intensity is enhanced by the permanent free volume created by the rigid cavity surrounding the PO(in) group.  相似文献   

3.
Alcohol complexation properties of eight mono- and diphenyl phosphonate-bridged cavitands were studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR) and theoretical calculations. The cavitands varied in number and position of phenyl phosphonate bridges and their orientation with respect to the cavity, length of the lower rim alkyl chains, and substituents at apical positions of the resorcarene skeleton. The specificities of the different cavitands toward primary, secondary, and tertiary alcohols varying long of the alkyl chain were investigated, together with the stabilities of the formed complexes. The number, position, and orientation of the P = O moieties affected the complex formation of the cavitands and stability of the complexes dramatically. Methyl groups at apical positions of the resorcarene skeleton also affected the complexation properties. Although length and branching of the alkyl chain of the alcohol influenced the complex formation, the effect on stability of the complexes was negligible.  相似文献   

4.
The preparation of cavitands composed of 4, 5, 6, and 7 aromatic subunits ([n]cavitands, n=4-7) is described. The simple, two-step synthetic procedure utilized readily available starting materials (2-methylresorcinol and diethoxymethane). The two cavitand products having 4 and 5 aromatic subunits exhibited highly symmetric cone conformations, while the larger cavitands (n = 6 and 7) adopt conformations of lower symmetry. 1H NMR spectroscopic studies of [6]cavitand and [7]cavitand revealed that these hosts undergo exchange between equivalent conformations at room temperature. The departure of these two cavitands from cone conformations is related to steric crowding on their Ar-O-CH2-OAr bridges and is predicted by simple molecular mechanics calculations (MM2 force field). X-ray diffraction studies on single crystals of the [4]cavitand, [5]cavitand, and [6]cavitand hosts afforded additional experimental support for these conclusions.  相似文献   

5.
《中国化学快报》2023,34(10):108559
Compartmentalization in the biological world brings excellent efficiency and specificity to the formation of complex compounds, inspiring supramolecular chemists to continuously search for defined spaces that can mimic such natural binding sites. Bowl-shaped cavitands built up from resorcinarenes (RA) present rigid and preorganized concave surfaces, which are capable of mimicking the molecular recognition properties of enzymes. The versatile scaffold of RA endows the cavitand with terrific variety and excellent binding behavior. This review provides a comprehensive overview over the structural modification to date in the high attention field of RA-based cavitands development. Different strategies for synthesizing diverse cavitands, such as small cavity cavitands, wider cavity cavitands, deep cavity cavitands, biscavitands, and asymmetric cavitands, are discussed in details. Furthermore, insights into their applications including catalysis, separations and sensing are provided.  相似文献   

6.
The synthesis and characterization of new nanoscale container molecules 7 and 8 are described. They are covalent hybrids of deepened, self-folding cavitands and metalloporphyrins. In receptor 7, the Zn-porphyrin wall is directly built onto the cavitand skeleton. Host 8 features a large unimolecular cavity containing two cavitands attached with the Zn-porphyrin wall. Its dimensions, approximately 10 x 25 A, place it among the largest synthetic hosts prepared to date. A series of adamantyl- and pyridyl-containing guests 14-20 of various lengths were prepared and used to determine the hosts' binding abilities in solution using UV/vis and (1)H NMR spectroscopy. Intramolecular hydrogen bonds at the upper rims of the cavitands resist the unfolding of the inner cavities and thereby increase the energetic barrier to guest exchange. The exchange is slow on the NMR time scale (at < or =300 K), and kinetically stable complexes result. When the cavities and metalloporphyrins participate simultaneously in the binding event, very high affinities for guests are found (-DeltaG295 up to 10 kcal x mol(-1) in toluene), to which the porphyrin fragments contribute significantly (-DeltaG295 up to 6 kcal x mol(-1)). The pairwise selection of two different guests by molecular container 8 is reported, and the termolecular complex formed raises the possibility of metal-catalyzed bimolecular reactions in these containers.  相似文献   

7.
The synthesis of seven novel protected amino acid cavitands is reported. All have four pendant n-undecyl chains and ‘headgroups’ connected by a two-carbon spacer at four positions on the aromatic rings. The amino acids employed are glycine, alanine, phenylalanine, leucine, proline, tryptophan, serine, glutamine and lysine. The structures of the compounds were elucidated using one- and two-dimensional NMR techniques, which verified that all tetra-substituted cavitands have symmetrical C4v conformation. This is the first example of a complete study for amino acid cavitand derivatives.  相似文献   

8.
The synthesis and binding properties of a new tricationic guanidiniocarbonyl pyrrole receptor 7 are described. Receptor 7 binds citrate 9 and other tricarboxylates such as trimesic acid tricarboxylate 8 with unprecedented high association constants of K(assoc) > 10(5) M(-1) in water as determined by UV and fluorescence tritration studies. According to NOESY experiments and molecular modeling calculations, the tricarboxylates are bound within the inner cavity of receptor 7 by ion pairing between the carboxylate groups and the guanidiniocarbonyl pyrrole moieties, favored by the nonpolar microenvironment of the cavity. Hence, receptor 7 can be regarded as a molecular flytrap. In the case of the aromatic tricarboxylate 8, additional aromatic interactions further strengthen the complex. The complexes with the tricarboxylates are so strong that even the presence of a large excess of competing anions or buffer salts does not significantly affect the association constant. For example, the association constant for citrate changes only from K(assoc) = 1.6 x 10(5) M(-1) in pure water to K(assoc) = 8.6 x 10(4) M(-1) in the presence of a 170-fold excess of bis-tris buffer and a 1000-fold excess of chloride. This makes 7 one of the most efficient receptors for the binding of citrate in aqueous solvents reported thus far.  相似文献   

9.
An efficient synthetic route for the synthesis of cavitands derived from calix[4]resorcinarene and its tetrabromo derivative was elaborated. A large-scale preparation was achieved in excellent yield, by replacing the high-boiling solvents with acetone. The tetrabromocavitands were transformed into tetra-boronic acid cavitands via lithiation with butyllithium and reaction with triethylborate. Two lipophilic cavitands bearing four boronic acid residues were demonstrated to form stable Langmuir monolayers at the water-air interface. These cavitand receptors differ in bridging unit between oxygen atoms, i.e. one contains a one-carbon unit and the other a two-carbon unit. l-sorbose, d-galactose, d-glucose, and d-cellobiose were selected for molecular recognition studies using the Langmuir techniques. The unsubstituted tetra-n-undecyl calix[4]resorcinarene was used as a reference receptor compound. Differences in surface potential were diagnostic of the different types of binding forces, which can occur.  相似文献   

10.
Two novel triptycene quinoxaline cavitands ( DiTriptyQxCav and MonoTriptyQxCav ) have been designed, synthesized, and applied in the supramolecular detection of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air. The complexation properties of the two cavitands towards aromatics in the solid state are strengthened by the presence of the triptycene moieties at the upper rim of the tetraquinoxaline walls, promoting the confinement of the aromatic hydrocarbons within the cavity. The two cavitands were used as fiber coatings for solid‐phase microextraction (SPME) BTEX monitoring in air. The best performances in terms of enrichment factors, selectivity, and LOD (limit of detection) values were obtained by using the DiTriptyQxCav coating. The corresponding SPME fiber was successfully tested under real urban monitoring conditions, outperforming the commercial divinylbenzene–Carboxen–polydimethylsiloxane (DVB–CAR–PDMS) fiber in BTEX adsorption.  相似文献   

11.
Molecular container compounds have a range of potential applications in chemical and biological sciences, most notably as nanoreactors, drug delivery devices, and storage materials. We report a highly efficient dynamic covalent chemistry approach for the synthesis of covalent rhombicuboctahedral nanocapsule 1 from 14 square- and triangular-shaped molecular components. The nanocapsule is obtained in a one-pot reaction in high yield and high purity, and has a solvodynamic diameter of 3.9 nm. In our approach, six formyl cavitands and eight 1,3,5-tris(p-aminophenyl)benzene molecules are assembled into a molecular rhombicuboctahedron through twenty four newly formed dynamic imine bonds. Binding studies show that 1 encapsulates tetraalkylammonium salts in toluene. We also discuss the growth mechanism of this nanocapsule.  相似文献   

12.
The controllable switching of suitably bridged resorcin[4]arene cavitands between a "vase" conformation, with a cavity capable of guest inclusion, and a "kite" conformation, featuring an extended flattened surface, provides the basis for ongoing developments of dynamic molecular receptors, sensors, and molecular machines. This paper describes the synthesis, X-ray crystallographic characterization, and NMR analysis of the "vase-kite" switching behavior of a fully pyrazine-bridged cavitand and five other mixed-bridged quinoxaline-bridged cavitands with one methylene, phosphonate, or phosphate bridge. The pyrazine-bridged resorcin[4]arene cavitand displayed an unexpectedly high preference for the kite conformation in nonpolar solvents, relative to the quinoxaline-bridged analogue. This observation led to extensive solvent-dependent switching studies that provide a detailed picture of how solvent affects the thermal vase-kite equilibration. As for any thermodynamic process in the liquid phase, the conformational equilibrium is affected by how the solvent stabilizes the two individual states. Suitably sized solvents (benzene and derivatives) solvate the cavity of the vase form and reduce the propensity for the vase-to-kite transition. Correspondingly, the kite geometry becomes preferred in bulky solvents such as mesitylene, incapable of penetrating the vase cavity. As proposed earlier by Cram, the kite form is preferred at low temperatures due to the more favorable enthalpy of solvation of the enlarged surface. Furthermore, the kite conformation is more preferred in solvents with substantial hydrogen-bonding acidity: weak hydrogen-bonding interactions between the mildly basic quinoxaline and pyrazine nitrogen atoms and solvent molecules are more efficient in the open kite than in the closed vase form. Vase-to-kite conversion is entirely absent in dipolar aprotic solvents lacking any H-bonding acidity. Thermal vase-kite switching requires fully quinoxaline- or pyrazine-bridged cavitands, whereas pH-controlled switching is also applicable to systems incorporating only two or three such bridges.  相似文献   

13.
Eric Efrain Dueno 《Tetrahedron》2004,60(48):10859-10868
A facile and efficient synthesis of novel cavitands containing eight hydroxyl groups was accomplished in eight steps beginning from commercially available resorcinol and the corresponding aldehydes. The synthesis combines two classical approaches to cavitand chemistry and yields the target octol cavitand molecules in gram quantities with no chromatographic separations. A variety of octaester cavitand derivatives were then prepared from the parent octols and their spectral properties are reported.  相似文献   

14.
The synthesis and structural characterization of novel, "molecular basket"-type bridged cavitands is reported. The resorcin[4]arene-based container molecules feature well-defined cavities that bind a wide variety of cycloalkanes and alicyclic heterocycles. Association constants (K(a)) of the 1:1 inclusion complexes were determined by both (1)H NMR and isothermal titration calorimetry (ITC). The obtained K(a) values in mesitylene ranged from 1.7×10(2) M(-1) for cycloheptane up to 1.7×10(7) M(-1) for morpholine. Host-guest complexation by the molecular baskets is generally driven by dispersion interactions, C-H···π interactions of the guests with the aromatic walls of the cavity, and optimal cavity filling. Correlations between NMR-based structural data and binding affinities support that the complexed heterocyclic guests undergo additional polar C-O···C=O, N-H···π, and S···π interactions. The first crystal structure of a cavitand-based molecular basket is reported, providing precise information on the geometry and volume of the inner cavity in the solid state. Molecular dynamic (MD) simulations provided information on the size and conformational preorganization of the cavity in the presence of encapsulated guests. The strongest binding of heterocyclic guests, engaging in polar interactions with the host, was observed at a cavity filling volume of 63 ± 9%.  相似文献   

15.
Here, we report four new homologous series of azo-functionalised achiral bent-core compounds. The paper deals with the design, synthesis and liquid crystalline properties of four new homologous series of photochromic materials. In this study, we have investigated the effect of the presence of –N=N– linkage at different locations of the molecular architecture, on the mesomorphic properties. The molecular structures of all the newly synthesised compounds are established using the organic spectroscopic methods. The liquid crystalline properties are investigated using polarising optical microscopy (POM), differential scanning calorimetry (DSC), X-ray diffraction and electro-optical studies. They exhibit B1 (colr) and B2 (SmCAPA) mesophases. We find that the presence of the –N=N– linkage at different locations in the molecular architecture does not seem to have much effect on the mesogenic behaviour of such compounds. However, we clearly see a profound effect of the location of the –N=N– linkage on the photo-induced electro-optical properties of these compounds.  相似文献   

16.
The understanding of the retention behavior of large molecules is an area of interest in liquid chromatography. Resorcinarene‐based cavitands are cavity‐shaped cyclic oligomers that can create host–guest interactions. We have investigated the chromatographic behavior of two types of cyclic tetramers as analytes in high‐performance liquid chromatography. The experiments were performed at four different temperatures (15, 25, 35, 45°C) on two types of reversed stationary phases (C8 and C18) from two different manufacturers. We have found a huge difference between the retention of resorcinarenes and cavitands. In some cases, the retention factor of cavitands was even a hundred times larger than the retention factor of resorcinarenes. The retention of methylated derivates was two to four times larger compared to that of demethylated compounds on every column. The opposite retention behavior of the resorcinarenes and cavitands on the two types of stationary phases showed well the difference of the selectivity of the XTerra and BDS Hypersil columns. The retention mechanism was studied by the thermodynamic parameters calculated from the van't Hoff equation.  相似文献   

17.
A series of new cavitands containing four esters, nitriles, 2-pyridyl, or 3-pyridyl groups were synthesized fromtetrahydroxycavitand. Their binding properties towards various metal ions are investigated.  相似文献   

18.
Tetrabenzimidazole cavitands 4 were prepared by condensation of ortho esters with octaamino cavitand 3 in 70-80% yield. Molecular modeling predicted that no intramolecular hydrogen bonds are possible between the imidazole fragments in the vase conformation of 4. Instead, this conformation provides four perfect binding sites for hydroxyl-containing molecules through an N-H---O-H---N pattern. Such interactions provide the means for sealing the cavitand's cavity. Accordingly, dry compounds 4 are not soluble in dry CDCl3 but readily dissolve upon addition of small amounts of alcohols or by saturation of the solution with water. 1H NMR spectroscopy revealed that in these solutions molecules 4 adopt a vase conformation while 1D GOESY experiments revealed their monomeric nature. In water-saturated CDCl3, these cavitands 4 form kinetically stable 1:1 inclusion complexes with tetramethylphosphonium bromide and triethylammonium chloride in which the cation is incorporated into the pi-basic cavity. Thus, cavitands 4 are a novel class of open-ended molecular containers capable of the formation of highly kinetically stable complexes upon assistance by hydrogen-bonding water molecules.  相似文献   

19.
Phosphonate cavitands are an emerging class of synthetic receptors for supramolecular sensing. The molecular recognition properties of the third-generation tetraphosphonate cavitands toward alcohols and water at the gas-solid interface have been evaluated by means of three complementary techniques and compared to those of the parent mono- and diphosphonate cavitands. The combined use of ESI-MS and X-ray crystallography defined precisely the host-guest association at the interface in terms of type, number, strength, and geometry of interactions. Quartz crystal microbalance (QCM) measurements then validated the predictive value of such information for sensing applications. The importance of energetically equivalent multiple interactions on sensor selectivity and sensitivity has been demonstrated by comparing the molecular recognition properties of tetraphosphonate cavitands with those of their mono- and diphosphonate counterparts.  相似文献   

20.
We report the synthesis of modified Cram‐type cavitands bearing one or two fluorescent labels for single‐molecule spectroscopic studies of vase? kite conformational switching (Scheme 3). Syntheses were performed by stepwise bridging of the four couples of neighboring H‐bonded OH groups of resorcin[4]arene bowls (Schemes 2 and 3). The new substitution patterns enable the construction of a large variety of future functional architectures. 1H‐NMR Investigations showed that the new partially and differentially bridged cavitands feature temperature‐ and pH‐triggered vase? kite conformational isomerism similar to symmetrical cavitands with four identical quinoxaline bridges (Table). It was discovered that vase? kite switching of cavitands is strongly solvent‐dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号