首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
As the 110°C TL emission in quartz uses the same luminescence centers as the OSL emission, the 110°C TL signal from a test dose may be used to monitor the OSL sensitivity change. It is thus important to study the relationship between the 110°C TL peak and the OSL sensitivity in studies related to optical dating from quartz. We have conducted a series of experiments using sedimentary quartz, where the annealing temperatures were varied between 260 and 1000°C before the measurement of OSL and 110°C TL sensitivities. Another series of experiments on two sedimentary quartz samples investigated the 110°C TL peak and OSL dose-dependent sensitivity change after different annealing temperatures. In these experiments, the 110°C TL and OSL signals from the test dose are shown to have similar sensitization characteristics: the 110°C TL sensitivity change is proportional to the OSL sensitivity change if the annealing temperature is lower than 500°C. It is concluded that the 110°C TL signal can be used to correct the OSL sensitivity change in the single-aliquot additive-dose protocol.  相似文献   

2.
The LM–OSL signal of quartz, while measured at room temperature, is dominated by an intermediate, broad and intense OSL component, so that its contribution and general characteristics are derived very accurately. Through a series of dose–response, bleaching and thermal decay at room temperature experiments, in conjunction with curve fitting studies, a component resolved analysis is carried out studying the correlation between this specific component, termed as LM–OSL component C2 and the 110 °C TL glow peak in quartz. The dose–response of these two luminescence components behaves exactly similar being linear at low doses and saturating at almost 100 Gy. Both signals decay exponentially under illumination, providing identical optical detrapping cross-section values. Residual of both luminescence signals after thermal decay at room temperature follows an exponential law, yielding similar mean half-lives. All previous luminescence features provide strong evidence for the electron trap being the same for both the 110 °C TL trap and the LM–OSL component C2. The results of the present work are very promising and clearly support the possibility of extrapolating the TL pre-dose methodology to the OSL pre-dose effect using only the LM–OSL component C2.  相似文献   

3.
《Radiation measurements》2000,32(3):227-231
A TL sensitivity change can usually be observed after the quartz sample is heated to a high temperature. The change of 110°C TL peak or PTTL was reported to be an increase in many studies. The change of TL sensitivity of other TL peaks, mainly 150 and 375°C, with annealing treatments was demonstrated in this study. Two types of TL sensitivities in granitic quartz were found. One type is the low temperature TL sensitivity (<250°C) which increases with annealing time and temperature. Another type is the high temperature TL sensitivity (>250°C) which usually decreases after annealing. If the TL sensitivity is a measure of the population of associated TL traps, the trap population is a potential geochronometer to date a cooling age of a granite host.  相似文献   

4.
《Radiation measurements》2000,32(3):247-252
We have investigated the gamma ray induced sensitization of the 110°C TL peak in quartz, separated from sand, in the dose range 30–750 Gy. A pre-dose of 100 Gy followed by annealing at 500°C for 1 h yielded an optimum sensitization factor of 14.2 for a test gamma dose of 0.5 Gy; this factor decreases slowly up to the studied pre-gamma dose of 750 Gy. From ESR studies carried out in the temperature range 25–550°C, the formation of E1-centres and their subsequent decay (at temperatures >400°C) have been observed. The released charge carriers (electrons) may lead to elimination of competitors (as a result of their filling up). Thus, the radiation-induced sensitization of the 110°C TL peak could be due to elimination of the competing deep traps.  相似文献   

5.
The timing of 110°C thermoluminescence (TL) and optically stimulated luminescence (OSL) sensitivity changes is explored using a natural (aeolian) quartz sample from Australia that was previously found to exhibit marked dose-dependent sensitivity change. The changes occur asynchronously; the 110°C TL sensitivity changes after dosing plus pre-heating, whereas the OSL sensitivity changes (proportionately with dose) after optical bleaching. Although the magnitude and saturation characteristics of the sensitivity changes are found to be similar, their non-synchronicity negates a direct link between the phenomena. Implications of these results for dating procedures are discussed. In particular, the results indicate that a single aliquot additive dose procedure similar to that developed for coarse-grained potassium feldspar should be possible for some quartz samples.  相似文献   

6.
《Radiation measurements》2000,32(3):253-272
The feasibility of using naturally-occurring calcite for gamma-ray dosimetry was investigated. Anneal treatment above 350°C increased the sensitivity of all radiation-induced TL peaks except the glow peaks above 300°C. On the other hand, annealing in air, at a temperature of 700°C caused a collapse in the TL sensitivity. The increase in TL efficiency was found to depend on the annealing temperature and time. Heating at 600°C for 5 h and quenching in ambient air are the optimum conditions for TL sensitivity enhancement in the calcite materials investigated. These results are explained using the energy scheme of the pre-dose model of Zimmerman (1971) and in terms of the impurity rearrangements in the crystal lattice induced by heating. It was found that the values of the kinetic parameters E, s and b for TL glow peaks remained unchanged for annealed samples. The TL dose–response curves for stable dosimetric peaks of annealed and unannealed calcite samples could be fitted to the same linear mathematical function. This implies that the annealing process probably does not change the nature of the trapping centers except the low temperature TL peaks at 125 and 160°C of flowstone. The TL dosimetric parameters of calcite samples annealed, including glow curves, fading characteristics, dose–responses, dose-rate responses and energy responses, have also been studied in detail. The response to gamma-rays of annealed calcite samples was found to be linear from 0.05 to 104 Gy. The lower limit of observable doses for each calcite sample was about 0.05 Gy. This offers the possibility of applying the investigated materials for gamma-ray dosimetry within this useful range. These dosimeters can be used in various applications, such as, in industries related to chemical technology (polymerization), food processing and in determining the dose received by the patient during medical examination and treatment.  相似文献   

7.
The following varieties of natural quartz, as the blue, the green, the red, the pink, the black, the sulphurous and the milky quartz, have been investigated concerning their thermoluminescence properties. For comparison sake natural colorless alpha quartz has been include. Since X-rays diffraction analysis has shown that all of them have the same crystal structure as the alpha quartz, it is expected that no great change in the TL property should be found, however, that was not the case. The TL peaks at 110, 175, 220, 325 and 375 °C observed in the alpha quartz are not found in all the varieties of quartz, for instance, the sulphurous quartz presented only 110° and 245° peaks, the pink one presented just 110, 220 and 375 °C peaks and so on. In respect to TL response as function of gamma ray dose a quite varied behavior has been observed and discussed.  相似文献   

8.
Abstract

Thermoluminescence (TL) traps in granitic quartz are potential geochronometers for ages of up to billions years. TL sensitivity is believed to be a measure of the population of TL traps. Their lifetimes can be roughly estimated either by isothermal annealing or by an empirical approach. The former is applicable to radiation sensitive traps corresponding to > 200°C TL when first order kinetics is assumed. The lifetimes are found to be several orders longer than those of trapped electrons. The lifetimes of thermally sensitive traps (< 200°C TL) are estimated from empirical curves that are constructed from data from granitic quartz of known age. It is found that the lifetime increases with the trap depth.  相似文献   

9.
Thermoluminescence (TL) of synthetic quartz exposed to beta irradiation following implantation with 60?keV N+ ions at fluences ranging between 1?×?1014 and 5?×?1015?ions/cm2 is reported. The glow curve measured at 5°C/s typically consists of a prominent peak near 110°C, studied in this work, and minor glow peaks at around 130°C and 190°C. The TL intensity of the main peak increased both with implantation and with fluence of implantation. The dependence of the intensity on heating rate and fluence suggests that the implantation introduces new defects that may possibly act as recombination centres. The increase in TL intensity with the heating rate exhibited by implanted samples has been observed in other luminescence materials. This anti-quenching phenomenon has been described as a competition effect between multiple luminescence pathways in luminescence materials. Kinetic analysis of the main glow peak using the initial rise, various heating rate and glow curve deconvolution methods shows that the activation energy of the main peak is about 0.7?eV with no systematic change due to ion fluence.  相似文献   

10.
Luminescence sensitivity changes in quartz as a result of annealing   总被引:4,自引:0,他引:4  
Retrospective dosimetry using optically stimulated luminescence (OSL) on quartz extracted from (for example) bricks needs to account for strong OSL sensitivity changes that are known to occur depending on the previous thermal treatment of the sample. Non-heated quartz exhibits OSL orders of magnitude less per unit radiation than that for heated material. The reason these temperature-induced sensitivity changes occur in quartz is presently not well understood. This phenomenon is also seen in the related area of luminescence dating in which sedimentary quartz and quartz from heated archaeological samples show very different OSL sensitivities. In this paper we report on studies of the effects of high temperature annealing on the OSL and phototransferred TL (PTTL) signals from sedimentary and synthetic quartz. A dramatic enhancement of both OSL and PTTL sensitivity was found especially in the temperature range 500–800°C. Computer simulations of the possible effects are shown to produce data that agree in all essential details with the experimental observations. It is further demonstrated that the enhanced OSL sensitivity as a function of annealing temperature is not a pre-dose effect.  相似文献   

11.
It is well known that the thermal history of a quartz sample influences the optically stimulated luminescence sensitivity of the quartz. It is found that the optically stimulated luminescence lifetime, determined from time resolved spectra obtained with pulsed stimulation, also depends on past thermal treatment. For samples at 20°C during stimulation, the lifetime depends on beta dose and on duration of preheating at 220°C prior to stimulation for quartz annealed at 600°C and above, but is independent of these factors for quartz annealed at 500°C and below. For stimulation at higher temperatures, the lifetime becomes shorter if the sample is held at temperatures above 125°C during stimulation, in a manner consistent with thermal quenching. A single exponential decay is all that is required to fit the time resolved spectra for un-annealed quartz regardless of the temperature during stimulation (20–175°C), or to fit the time resolved spectra from all samples held at 20°C during stimulation, regardless of annealing temperature (20–1000°C). An additional shorter lifetime is found for some combinations of annealing temperature and temperature during stimulation. The results are discussed in terms of a model previously used to explain thermal sensitisation. The luminescence lifetime data are best explained by the presence of two principal luminescence centres, their relative importance depending on the annealing temperature, with a third centre involved for limited combinations of annealing temperature and temperature during stimulation.  相似文献   

12.
《Radiation measurements》2007,42(2):144-155
The structure of the linearly modulated optically stimulated luminescence (LM-OSL) signal was studied for four sedimentary quartz samples, collected from different sites around Istanbul, Turkey. Applying a computerized deconvolution analysis to the LM-OSL curves, at least six individual components of first-order kinetics were identified and photoionization cross-section of each component was evaluated. The OSL dose–response curve of each component for each quartz sample was obtained, showing a remarkable differentiation from component to component. The behavior of a highly dosed sample to successive LM-OSL measurements was also studied showing a stable recuperation signal in the position of the “slow” and “medium” components and high resistance to OSL bleaching of the “slow” component. The individual sensitivity of each component as a function of the activation temperature was obtained. The sensitivity of each component was normalized over the respective sensitivity of the glow-peak at 110 °C of quartz in order to investigate the ability of the 110 °C glow-peak to act as a correction factor for all components of the LM-OSL curves examined.  相似文献   

13.
Knowledge of the relative luminescence response to alpha and beta radiation is very important in TL and OSL dating. In the present study the relative alpha to beta response is studied in a sedimentary quartz sample, previously fired at 900 °C for 1 h, in the dose region between 1 and 128 Gy, for both thermoluminescence (TL) and linearly modulated optically stimulated luminescence (LM – OSL). The LM – OSL measurements were performed at room temperature and at 125 °C. All OSL signals were deconvolved into their individual components. Comparison of OSL curves after alpha and beta irradiation strongly supports that quartz OSL components follow first order kinetics in both cases. In the case of TL, the relative alpha to beta response is found to be very different for each TL glow-peak, but it does not depend strongly on irradiation dose. In the case of LM – OSL measurements, it is found that the relative behaviour of the alpha to beta response is different for three distinct regions, namely the fast OSL component, the region of medium OSL component originating from the TL glow-peak at 110 °C when stimulation takes place at room temperature and finally the region of slow OSL component. Following stimulation at ambient temperature, the relative alpha to beta response of all components was not observed to depend significantly on dose, with the value of ratio being 0.03 and a tendency to decrease with increasing dose. However, in the case of measurements performed at 125 °C, the relative response of the fast components is much enhanced, and for the remaining components it increases with increasing dose. Special care must be taken to examine the relative alpha to beta response of the fast component at 125 °C which contrasts the relative response of the TL peak at ca. 325 °C. The implications for the dating of annealed quartz are also briefly discussed.  相似文献   

14.
Thermally assisted optically stimulated luminescence (TA-OSL) method is an excellent advancement of high-dose luminescent dosimetry with involvement of very deep traps. This specific method has been reported to be very efficient for the cases of anion deficient alumina doped with carbon and quartz. Nevertheless, reproducibility and sensitivity changes have been previously studied only for the case of quartz. In the present study, reproducibility was studied in both terms of quantitative and qualitative features, such as signal intensity and glow curve shape respectively, for both TL and TA-OSL signals on various TLD 500 dosimeters. Finally, for the case of the TL signal, sensitivity changes were studied with and without applying TA-OSL, towards studying the impact of the TA-OSL on the main dosimetric TL signal.  相似文献   

15.
The influence of deep traps on the 450 K thermoluminescence (TL) peak of Al2O3:C is studied. Depending upon the sample and on the degree of deep trap filling, features such as the TL width, area and height can vary considerably. These effects are interpreted to be due to: (a) sensitivity changes introduced by competition mechanisms involving deep electron and hole traps, and (b) the multiple component nature of the 450 K TL peak. The influence of the deep traps on the TL was studied using different excitation sources (beta irradiation or UV illumination), and step annealing procedures. Optical absorption measurements were used to monitor the concentration of F- and F+-centers. The data lead to the suggestion that the competing deep traps which become unstable at 800–875 K are hole traps, and that the competing deep traps which become unstable at 1100–1200 K are electron traps. Both the dose response of the TL signal and the TL sensitivity are shown to be influenced by sensitization and desensitization processes caused by the filling of deep electron and hole traps, respectively. Changes in the TL peak at low doses were also shown to be connected to the degree of filling of deep traps, emphasizing the influence of deep trap concentration and dose history of each sample in determining the TL properties of the material. Implications of these results for the optically stimulated luminescence properties are also discussed.  相似文献   

16.
D. K. Koul 《Pramana》2008,71(6):1209-1229
The 110°C glow peak of quartz, though unstable at room temperature, has worked wonderfully in archaeology and retrospective dosimetry due to its pre-dose sensitization property. Various aspects of the peak, like its nature, defect centres involved, the impact of different stimuli and its application have been extensively studied. The main aims of this review are to (i) summarize briefly the work carried out on the various facets of this TL glow peak during the last four decades and (ii) identify the areas which need further attention in order to have a better understanding of the luminescence characteristics of this TL peak.   相似文献   

17.
《Radiation measurements》2008,43(8):1343-1353
The predose technique of thermoluminescence (TL) for quartz has been used extensively for retrospective dosimetry and archaeological authenticity testing. In this paper, we use a previously published comprehensive kinetic model for quartz, to simulate the complete sequence of experimental steps taken during the additive dose and the multiple activation versions of the predose technique. The simulation results show how both versions of the predose technique can reproduce the paleodose received by the sample with an accuracy of 1–5% in the low dose region of 0–2 Gy. For doses greater than 2Gy the non-linear dose dependence of the sensitivity of the “110C” TL peak causes significant inaccuracies in the technique. The solution of the kinetic differential equations elucidates several electron and hole processes taking place during the experimental predose procedure; these processes include the thermal transfer of holes from the Zimmerman hole reservoirs to the luminescence center, the radiation quenching of the TL sensitivity and the radiation-enhanced sensitivity of quartz samples. Specific numerical examples are given for samples exhibiting the thermal activation characteristics of “low-S0” and “high-S0” values. Quantitative results are presented for the effect of the test dose and of the calibration beta dose β on the accuracy of both versions of the predose technique. Results are also presented for the sensitivity of the predose technique to the natural variations of the hole concentrations in the luminescence center. Finally, the results of the predose technique simulations are compared with those from simulating the popular single aliquot SAR/OSL technique based on optically stimulated luminescence signals.  相似文献   

18.
This study investigated changes in the thermoluminescence sensitivity of volcanic and plutonic quartz following irradiation and annealing treatments with the aim of improving the accuracy of red thermoluminescence (RTL) dating. The response to X-ray irradiation (49 Gy) and RTL readout to 450 °C at a rate of 1 °C s?1 was repeated 12 times and the sensitivity change induced by doses ranging from 49 to 293 Gy was examined. The results of these two experiments revealed that the final enhanced ratio of the sensitivity of plutonic quartz is 2.1–2.8 and 2.2–2.3 for two types of analyzed samples, much greater than that of volcanic quartz. To examine the thermal stability of quartz, several annealing treatments were performed from 300 to 900 °C for 100 min. An annealing treatment of 500 °C for 100 min resulted in a strong enhancement of RTL emission intensity for plutonic quartz, approaching the level for volcanic quartz. Finally, the single aliquot regeneration (SAR) method was applied to evaluate the absorbed dose, De, for aliquots irradiated with a known-dose ranging from 195 to 1952 Gy. All SAR De values obtained with volcanic quartz were in good agreement with the known dose values; whereas for plutonic quartz large uncertainties in De were obtained due to a marked sensitivity change. The magnitude of the RTL sensitivity change of quartz depends on dose and annealing treatment, and is clearly dependent on a classification of quartz based on thermal history.  相似文献   

19.
The purpose of the present study is to identify the effect of the increasing temperature IR stimulation to the component-resolved OSL luminescence signal of mixed quartz-feldspars material. Post IR OSL signals measured at 110 °C were analysed via only general order kinetic terms, while IR signals obtained at increasing temperatures were de-convolved using the sum of general order kinetics plus a tunnelling component. By increasing stimulation temperature, it was demonstrated that IRSL at temperatures above 50 °C does not only stimulate feldspar but also stimulates both fast and medium quartz OSL components. In the temperature range between 175 and 250 °C, the IRSL initial intensity is dominated by the fast OSL component. Estimated equivalent doses using either Post-IR175.OSL110 as well as IRSL175 (with the indices indicating the measurement temperature) are in good agreement between each other, due to both stimulating quartz. Finally, the physical meaningfulness of the fitting parameters for the tunnelling component is also discussed.  相似文献   

20.
The thermoluminescence (TL) of synthetic quartz has been investigated in the temperature region 275–475 K. These measurements have revealed a more complicated structure of the 110°C TL peak and thermal activation energies and frequency factors have been estimated for a number of peaks within the glow curve. The results obtained after annealing samples in different atmospheres indicate that oxygen-related defects play an important role in the luminescence process, involving both the charge traps and recombination centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号