首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Behaviour displayed by mechanoluminescence (ML) in CaZrO3:Eu3+ doped phosphors with variable concentration of europium ions are described. When the ML is excited impulsively by the impact of a load on the phosphors the ML intensity increases with time, attains a maximum value and then it decreases. In the ML intensity versus time curve, the peak increases and shifts towards shorter time values with increasing impact velocities. Sample was synthesized by combustion synthesis method with variable concentration of Eu3+ ions (0.1, 0.2, 0.5, 1, 1.5 mol%) and characterized by X-ray diffraction technique. The total ML intensity IT is defined as the area below the ML intensity versus time curve. Initially IT increases with impact velocity V0 of the load and then it attains a saturation value for higher values of impact velocities which follow the relation IT = IT 0 exp.(?Vc/V0) where IT 0 and Vc are constants. Total ML intensity increases linearly with the mass of the phosphors for higher impact velocities. The ML intensity Im, corresponding to the peak of ML intensity versus time curve increases linearly with the impact velocities. The time tm, is found to be linearly related to 1000/V0. The mechanoluminescence induced by impulsive excitation in europium doped CaZrO3 phosphors plays a significance role in the understanding of biological sensors and display device application.  相似文献   

2.
ZrO2:Ti phosphors show such a strong mechanoluminescence (ML) that it can be seen in day light with naked eye. When a pellet of ZrO2:Ti phosphor mixed in epoxy resin is deformed in the elastic region at a fixed strain rate using a testing machine, ML intensity increases linearly with time, and when the deformation is stopped, ML intensity decreases exponentially with time. For a given strain rate, ML intensity increases linearly with pressure, and for a given pressure, ML intensity increases linearly with the strain rate. The total ML intensity, in the deformation region, increases quadratically with pressure; however, the total ML intensity in the post-deformation region increases linearly with pressure. ML intensity decreases with successive number of pressings, whereby the reduced ML intensity can be recovered by UV-irradiation of the sample. ML intensity increases linearly with density of filled electron traps and it is optimum for a particular concentration of Ti in ZrO2. ML intensity should change with increasing temperature of the phosphors. Although ZrO2 is non-piezoelectric as a whole, it seems that the local structures near the Ti ions in ZrO2 crystals are in the piezoelectric phase. The elastico ML in ZrO2 phosphors can be understood on the basis of the localized piezoelectrification-induced detrapping model. According to this model, the localized piezoelectric field near Ti ions causes detrapping of electrons and subsequently the detrapped electrons moving in the conduction band are captured by the energy state of excited Ti4+ ions, whereby excited Ti4+ ions are produced and consequently the decay of excited Ti4+ ions gives rise to the light emission. The expressions derived on the basis of this model are able to explain satisfactorily the characteristics of ML. The relaxation time of localized piezoelectric charges and the threshold pressure for the ML emission can be determined from ML measurements. The long decay of elastico ML indicates the possibility of exploring persistent elastico ML, which may be useful for the fabrication of dim light sources capable of operating without any external power.  相似文献   

3.
When rare-earth-doped strontium aluminate phosphor mixed in an epoxy resin, is deformed elastically by applying a uniaxial pressure, then initially the mechanoluminescence (ML) intensity increases with time, attains a peak value Im at a particular time tm, and later on it decreases with time. After tm, initially, the ML intensity decreases exponentially at a fast rate and then it decreases exponentially at a slow rate. The ML appears after a threshold pressure and then, initially at low pressure, the peak intensity Im of ML increases linearly with the magnitude of applied pressure, and for high pressure, Im increases exponentially with the magnitude of applied pressure. The value of Im increases linearly with the density of filled hole traps. The ML emission also takes place during the release of applied pressure. There should be a significant effect of temperature on the ML intensity of rare-earth-doped strontium aluminate phosphors. The ML intensity of rare-earth-doped strontium aluminates decreases with successive number of the applications of pressure and the diminished ML intensity can be recovered with the exposure of the samples to UV-radiation. The ML spectra of rare-earth-doped strontium aluminate phosphors are similar to their photoluminescence spectra. As only the piezoelectric-phase of the strontium aluminate phosphors exhibit ML during their elastic deformation, the ML emission can be attributed to the piezoelectrification of the crystals. Considering that the piezoelectric field causes decrease in the trap-depth of the hole traps and, therefore, the holes transferred from traps to the valence band recombine with (Eu1+)* ions, whereby the Eu2+ ions are excited, expressions are derived for different parameters of ML, which are able to satisfactorily explain the experimental results. It is shown that the lifetimes of holes in the shallow traps in stressed and unstressed materials, and the threshold pressure Pt for the ML emission, and other parameters of the ML, can be determined from the ML measurements. Finally, the criteria for tailoring strong elasico-mechanoluminescent materials are explored.  相似文献   

4.
The SrAl2O4:Eu,Dy phosphors prepared by solid state reaction technique in a reduced atmosphere of 95% Ar+5% H2 exhibit very intense mechanoluminescence (ML) which can be seen in daylight with naked eye. When the phosphors are deformed by the impact of a low-power electric hammer, initially the ML intensity increases with time, attains a maximum value and then decreases with time. After the threshold pressure, the peak of ML intensity Im and the total ML intensity IT increase with the increasing value of the impact pressure. For the ML excited by the pressure pulse of short duration, two decay times of ML are observed; however, for the ML excited by the pressure pulse of long duration, only one decay time is observed. The ML intensity decreases with successive applications of pressure on SrAl2O4:Eu,Dy phosphors. For the low applied pressure in the range below the limit of elasticity recovery of ML intensity takes place when the sample is exposed to ultraviolet (UV) light. This fact indicates that the vacant traps produced during the application of pressure pulses get filled during the exposure of the sample to UV light. The ML in the elastic region of SrAl2O4:Eu,Dy phosphors can be understood on the basis of the piezoelectrically induced detrapping model. The non-irradiated SrAl2O4:Eu2+,Dy3+ phosphors exhibit ML during the fracture of the compact mass of phosphors whose ML intensity is less when compared to that of the UV-irradiated compact masses. The ML induced by pressure pulses may be useful for determining the magnitude and rise time of unknown pressure pulses and to determine the lifetime of charge carriers in shallow traps.  相似文献   

5.
When a crystal is fractured impulsively by the impact of a moving piston, then initially the mechanoluminescence (ML) intensity increases quadratically with time, attains a peak value and later on it decreases with time. Considering that the solid state ML and gas discharge ML are excited due to the charging and subsequent production of electric field near the tip of moving cracks, expressions are derived for the transient ML intensity I, time tm and intensity Im corresponding to the peak of ML intensity versus time curve, respectively, the total ML intensity IT, and for fast and slow decays of the ML intensity. It is shown that the decay time for the fast decrease of the ML intensity after tm, is related to the decay time of the strain rate of crystals, and the decay time of slow decay of ML, only observed in phosphorescent crystals, is equal to the decay time of phosphorescence. The value of tm decreases with the increasing impact velocity, Im increases with the increasing impact velocity, and IT initially increases and then it tends to attain a saturation value for higher values of the impact velocity. The values of tm, Im and IT increase linearly with the thickness, area of cross-section and volume of the crystals, respectively. So far as the rise, attainment of ML peak, and fast decay of ML are concerned, there is no any significant difference in the time-evolution of solid state ML, gas discharge ML, and the ML emission consisting of both the solid state ML and gas discharge ML. From the time-dependence of ML, the values of the time-constant for decrease of the surface area created by the movement of a single crack, the time-constant for the decrease of strain rate of crystals, and the decay time of phosphorescence of crystals can be determined. A good agreement is found between the theoretical and experimental results. The importance of fracto ML induced by impulsive deformation of crystals is discussed.  相似文献   

6.
The present paper explores the correlation between fracto-mechanoluminescence and fracture of solids and thereby provides a clear understanding of the physics of fracto-mechanoluminescence. When a fluorescent or non-photoluminescent crystal is fractured impulsively by dropping a load on it, then initially the mechanoluminescence (ML) intensity increases linearly with time, attains a maximum value Im at a particular time tm and later on it decreases exponentially with time. However, when a phosphorescent crystal is fractured impulsively by dropping a load on it, then initially the ML intensity increases linearly with time, attains a maximum value Im at a particular time tm and later on it decreases initially at a fast rate and then at a slow rate. For low impact velocity the value of tm is constant, however, for higher impact velocity tm decreases logarithmally with the increasing impact velocity. Whereas the peak ML intensity Im increases linearly with the impact velocity, the total ML intensity IT, initially increases linearly with the impact velocity and then it tends to attain a saturation value for higher values of the impact velocity. The value of tm increases logarithmally with the thickness of crystals, Im increases linearly with the area of cross-section of crystals and IT increases linearly with the volume of crystals. Generally, the ML of non-irradiated crystals decreases with increasing temperature of crystals. Depending on the prevailing conditions the ML spectra consist of either gas discharge spectra or solid state luminescence spectra or combination of the both. On the basis of the rate of generation of cracks and the rate of creation of new surface area of crystals, expressions are derived for the ML intensity and they are found to explain satisfactorily the temporal, spectral, thermal, crystal-size, impact velocity, surface area, and other characteristics of ML. The present investigation may be useful in designing of damage sensors, fracture sensors, ML-based safety management monitoring system, fuse-system for army warheads, milling machine, etc. The present study may be helpful in understanding the processes involved in earthquakes, earthquake lights and mine-failure as they basically involve fracture of solids.  相似文献   

7.
The present paper reports the luminescence induced by plastic deformation of coloured alkali halide crystals using pressure steps. When pressure is applied onto a γ-irradiated alkali halide crystal, then initially the mechanoluminescence (ML) intensity increases with time, attains a peak value and later on it decreases with time. The ML of diminished intensity also appears during the release of applied pressure. The intensity Im corresponding to the peak of ML intensity versus time curve and the total ML intensity IT increase with increase in value of the applied pressure. The time tm corresponding to the ML peak slightly decreases with the applied pressure. After tm, initially the ML intensity decreases at a fast rate and later on it decreases at a slow rate. The decay time of the fast decrease in the ML intensity is equal to the pinning time of dislocations and the decay time for the slow decrease of ML intensity is equal to the diffusion time of holes towards the F-centres. The ML intensity increases with the density of F-centres and it is optimum for a particular temperature of the crystals. The ML spectra of coloured alkali halide crystals are similar to the thermoluminescence and afterglow spectra. The peak ML intensity and the total ML intensity increase drastically with the applied pressure following power law, whereby the pressure dependence of the ML intensity is related to the work-hardening exponent of the crystals. The ML also appears during the release of the applied pressure because of the movement of dislocation segments and movements of dislocation lines blocked under pressed condition. On the basis of the model based on the mechanical interaction between dislocation and F-centres, expressions are derived for the ML intensity, which are able to explain different characteristics of the ML. From the measurements of the plastico ML induced by the application of loads on γ-irradiated alkali halide crystals, the pinning time of dislocations, diffusion time of holes towards F-centres, the energy gap Ea between the bottom of acceptor dislocation band and the energy level of interacting F-centres, and work-hardening exponent of the crystals can be determined. As in the elastic region the strain increases linearly with stress, the ML intensity also increases linearly with stress, however, as in the plastic region, the strain increases drastically with stress and follows power law, the ML intensity also increases drastically with stress and follows power law. Thus, the ML is intimately related to the plastic flow of alkali halide crystals.  相似文献   

8.
An impulsive technique has been used for mechanoluminescence (ML) measurements in γ-irradiated Er doped CaF2 crystals. When the ML is excited impulsively by the impact of moving piston on to γ-irradiated CaF2:Er crystals, two peaks are observed in ML intensity with time and it is seen that the peak intensities of first and second peaks (Im1 and Im2) increase with increasing impact velocity. However the time corresponding to first and second peaks (tm1 and tm2) shifts towards shorter time values with increasing impact velocity. It is also seen that the total ML intensity ITotal initially increases with the impact velocity and then it attains a saturation value for higher values of the impact velocity. We have presented a theoretical explanation for the observed results.  相似文献   

9.
A series of Sr2MgSi2O7:xCe3+ (x?=?1.0%, 2.0%, 3.0%, 4.0% and 5.0%) phosphors were synthesized by the solid-state reaction method. The phosphor with optimum thermoluminescence, photoluminescence and mechanoluminescence (ML) intensity was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared techniques. The trapping parameters (i.e. activation energy, frequency factor and order of the kinetics) of each synthesized phosphor have been calculated using the peak shape method and the results have been discussed. Under ultraviolet excitation (325?nm), Sr2MgSi2O7:xCe3+ phosphors were composed of a broad band peaking at 385?nm, belonging to the broad emission band which emits violet-blue color. Commission International de I’Eclairage coordinates have been calculated for each sample and their overall emission is near violet-blue light. In order to investigate the suitability of the samples for industrial uses, color purity and color rendering index were calculated. An ML intensity of optimum [Sr2MgSi2O7:Ce3+ (3.0%)] phosphor increases linearly with increasing impact velocity of the moving piston which suggests that these phosphors can be used as fracto-ML-based devices. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston.  相似文献   

10.
Luminescence induced by elastic deformation of ZnS:Mn nanoparticles   总被引:1,自引:0,他引:1  
When the thin film of ZnS:Mn nanoparticles deposited on a glass substrate is elastically deformed by applying a load, then initially the mechanoluminescence (ML) intensity increases with time, attains a peak value Im at a particular time tm, and later on it decreases with time. The rise and decay characteristics of the ML produced during release of the load are also similar to those produced during the application of load. Similar rise, occurrence of peak and then decrease in ML intensity are also found, when the film is deformed impulsively by dropping a steel ball of small mass from a low height; however, in this case, the time durations for the occurrence of ML and decay time of ML are very short. In the cases of loading and impulsive deformation ,after tm, initially the ML intensity decreases at a fast rate and then at a slow rate, in which the decay time of fast decrease is equal to the time-constant for rise of pressure and the decay time for slow decrease is equal to the relaxation time of the surface charges. In the case of loading, the peak intensity Im and the total intensity IT of ML increase quadratically with the magnitude of applied pressure; however, in the case of impulsive deformation, both the Im and IT increase linearly with the height through which the ball is dropped on to the sample. In the case of deformation of the samples at a fixed strain rate, Im should increase linearly with the applied pressure. The elastico ML in ZnS:Mn nanoparticles can be understood on the basis of the piezoelectrically-induced electron detrapping model, in which the local piezoelectric field near the Mn2+ centres reduces the trap-depth, and therefore, the detrapping of filled electron traps takes place, and subsequently the energy released non-radiatively during the electron-hole recombination excites the Mn2+ centres and de-excitation gives rise to the ML. The equal number of photons emitted during the application of pressure, release of pressure, and during the successive applications of pressure, indicates that the detrapped electron-traps get filled during the relaxation of the surface charges induced by the application and release of pressure because the charge carriers move to reduce the surface charges. On the basis of the piezoelectrically-induced electron detrapping model, expressions are derived for different characteristics of the ML of ZnS:Mn nanoparticles and a good agreement is found between the theoretical and experimental results. The expressions explored for the dependence of ML intensity on several parameters may be useful in tailoring the suitable nanomaterials capable of exhibiting ML during their elastic deformation. The values of the relaxation time of surface charges, time-constant for the rise of pressure, and the threshold pressure can be determined from the measurement of the time-dependence of ML. It seems that the trapping and detrapping of charge carriers in materials can be studied using ML.  相似文献   

11.
This paper reports the synthesis of ZnS:Mn nanocrystals by the chemical route in which mercaptoethanol was used as the capping agent. The particle size of such nanocrystals was measured using XRD and TEM patterns and was found to be in between 3and 5 nm. It was found that the peak position of TL glow curve and the TL intensity of ZnS:Mn nanoparticles increases as the particle size is decreased. The isothermal decay technique is used to determine the trap-depth. The stability of the charge carriers in the traps increase with the decrease in size of the nanoparticles. The higher stability may be attributed to the higher surface/volume ratio and also to the increase in the trap-depth with decreasing particle size. When a ZnS:Mn nanocrystal is deformed the peak intensity Im increases linearly with the increasing height of the load. After Im, initially the ML intensity decreases at a fast rate, and later on it decreases at a slow rate. The ML in ZnS:Mn nanocrystals can be understood on the basis of the piezoelectrically induced electron detrapping model.  相似文献   

12.
The alkaline-earth fluorohalide crystals MFX, where M=Ca, Sr, Ba, Pb and X=Cl, Br, I, form an important class of materials crystallizing in the PbFCl-type tetragonal structure which is also called the matlockite structure. These compounds have long been of interest because of the various defect species which can be detected by spin resonance and associated techniques. The crystals were prepared by slow cooling of the melt of a stoichiometric mixture of BaF 2 and the corresponding chloride or bromide under 0.2 bar of ultrapure argon (5N5), often slightly fluorinated. We have studied the mechanoluminescence (ML) of BaFBr:Sm 2+ and BaFCl:Sm 2+ crystals. It is seen that after the impact of a moving piston, initially the ML intensity increases with time, attains a maximum value and then it decreases with time up to a particular minimum value, and then it increases again, attaining a peak value and finally disappears. The first peak lies in the deformation region and the second peak lies in the post-deformation region. The ML intensity of the BaFCl:Sm 2+ crystal is much higher than the ML intensity of the BaFBr:Sm 2+ crystal. For different impact velocities, the ML intensity increases with velocity; and the total ML intensity attains a saturation value for higher impact velocities. The total ML intensity increases with the increase in the applied load. It is suggested that the moving dislocation produced during deformation of crystals captures holes from hole-trapped centers (like H centers), and the subsequent radiative recombination of the dislocation holes with electron gives rise to ML. Thermoluminescence (TL) of BaFBr:Sm 2+ and BaFCl:Sm 2+ crystals was studied after exposure to ultraviolet rays with the help of a TLD reader. The peak of TL for the BaFBr:Sm 2+ crystal is found at ~247°C and for BaFCl:Sm 2+ crystals at 283°C. The TL intensity initially increases with increase in the UV radiation and then it attains saturation for higher values of UV exposure. The absorption spectrum was recorded with the help of a UV–visible spectrophotometer (Shimadzu). The band found at 275 nm was attributed to H centers.  相似文献   

13.
Mechanoluminescence (ML) properties of γ-irradiated and non-irradiated capped ZnS:Cu nanophosphors have been investigated. The nanoparticles were prepared by wet chemical method using different capping agents. The samples were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). ML was excited impulsively by dropping a load on to the sample. Two peaks have been observed in the ML intensity versus time curve. It has been found that ML intensity rises with time, attains a maximum and then decays. The ML intensity of γ-irradiated SiO2 capped ZnS:Cu nanophosphors was found to be the highest amongst the presently investigated nanophosphors. Mechanism of ML has been explained on the basis of piezoelectrically induced charge carrier detrapping model.  相似文献   

14.
Eu3+-doped ZrO2 phosphors with different charge compensators (Li+, Na+, K+) were prepared by the sol-gel method. The properties of the as-obtained samples are characterized by X-ray diffraction, scanning electron microscope, photoluminescence spectra, and decay curve. The results show that ZrO2:Eu3+ phosphors with different charge compensation are mixed phase of tetragonal and monoclinic phase, and the volume fraction of tetragonal phase of ZrO2:Eu3+/Na+ phosphor is bigger than the other phosphors. The phosphors can emit strong red light at 606~616 nm (5D07F2) excited by ultraviolet light (395 nm). Compared with two charge compensation patterns in the ZrO2:Eu3+, it has been found that ZrO2:Eu3+ phosphors used Na+ as charge compensator show greatly enhanced red emission under 395 nm excitation and longer luminescence lifetime.  相似文献   

15.
In this work mechanoluminescence and lyoluminescence properties of Li2BaP2O7: Eu phosphor are reported. Phosphor was synthesized through high temperature solid state diffusion method. Analysis of phosphor was made through various characterization techniques such as mechanoluminescence (ML), lyoluminescence (LL), x-ray powder diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL). It was observed that ML intensity showed good enhancement with variation in time, concentration of dopant Eu, mass of piston and impact velocity. Lyoluminescence intensity was also found to increase with change in time and mass of the sample. Variation in gamma doses imparted to Li2BaP2O7: Eu phosphor was observed to affect both the ML and LL intensities' respectively. Both the ML and LL intensity attain a maximum value Im at a particular time tm but afterwards, it decreases and finally disappears. Morphology of Li2BaP2O7: Eu luminescent material was also studied using scanning electron microscope technique. The average particle size in Eu doped lithium barium diphosphate phosphor was around 2 μm.  相似文献   

16.
A pair of gold-vapor laser (627.8 nm) in an oscillator-amplifier configuration was used to investigate the small signal gain, g0, and saturation intensity, Is, as amplifying parameters, versus pressure at various types of buffer gas. It was shown that the small signal gain decreases and saturation intensity increases linearly with increasing the pressure. Moreover, the values of these parameters are different using various gas mixtures in gain medium. Both parameters were estimated to be more at helium buffer gas atmosphere than that of neon or their mixed ones.  相似文献   

17.
微波热效应合成(Y,Gd)BO3:Eu3+荧光体   总被引:13,自引:2,他引:11  
李沅英  冯守华 《发光学报》1995,16(3):261-264
本文首次报道用微波热效应法合成(Y,Gd)BO3:EU3+荧光体粉晶材料,X射线粉末衍射确认为六方晶系,晶胞参数a=0.3796nm,c=0.8835nm;在589nm和613.0nm监测下,其激发光谱峰是239.0nm和240.0nm,半高宽40nm.在240.0nm激发下,589nm和612-626nm的荧光强度比为1.9/1.  相似文献   

18.
交叉色关联噪声驱动的单模激光系统统计性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王兵  邵继红  吴秀清 《物理学报》2009,58(3):1377-1382
采用交叉色关联的加性色噪声和乘性色噪声驱动的单模激光立方模型,通过诺维科夫理论和福克斯近似以及斯特拉托诺维奇近似,得到反映激光统计性质的强度关联函数C的表达式;研究关联时间τ、净增益系数a0和交叉关联强度λ对强度关联函数C的影响.数值模拟发现,在阈值以上(a0>0)时,关联函数C随关联时间τ的增大而增大;在阈值以下(a0<0)时,关联函数C随关联时间τ的增大而减小.无论在阈值以上还是阈值以下,关联函数C均随交叉关联强度λ的增大而减小.在C-a0曲线上存在单峰. 关键词: 单模激光 交叉关联 强度涨落 强度关联函数  相似文献   

19.
Terbium activated Al2O3 phosphors were synthesized by combustion technique using hydrazine as a reductive non-carbonaceous fuel. X-ray diffraction (XRD) patterns of the samples were recorded to confirm the formation of the sample. Scanning electron microscope (SEM) images were taken to study the surface morphology of the sample. The photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties of the γ-ray irradiated samples were studied. ML was excited impulsively by dropping a piston on the sample. In ML glow curves one peak with a shoulder was observed. ML intensity increases with activator concentration. Optimum ML was observed for the sample having 0.5 mol% of Tb ions. In the TL glow curve two distinct peaks, one around 222 °C and another around 280 °C, were observed for the samples having 0.5 mol% of activator concentration. In the PL spectra the 5D47F5 line at 544 nm in the green region is observed, which is the strongest in Al2O3 system. It is suggested that de-trapping of trapped charge carriers followed by recombination is responsible for ML and TL in this system.  相似文献   

20.
何成娣  徐伟  岳晓乐 《物理学报》2010,59(8):5276-5280
基于非对称双稳系统的理论研究了偏单稳系统的平均首次穿越时间问题,并基于势函数分析了参数对平均首次穿越时间的影响.得出结论:1)当偏稳系数为零时,随着加性噪声强度和参数a的增加,两个方向的平均首次穿越时间相等且均单调减小,2)随着偏稳系数b的增加,势阱的对称性被破坏,粒子由xs1跃迁到xs2的时间线性地减小,而粒子由xs2跃迁到xs1的时间线性地增加.3)随着乘性噪声强度和加性噪声强度比率R的增加,两个方向平均首次穿越时间均单调增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号