首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The vibrational spectra of a number of transition-metal complexes containing terminal or bridging nitrido (N3?) and oxo (O2?) ligands are reported. Full assignments of fundamental modes are given for (OsO314N)?, (OsO315N)?, (Os14NX4)?, (Os15NX4)?, (Ru14NX4)?, (Os14NX5)2?, (Os15NX5)2? and (Ru14NX5)2? (X = Cl, Br), and also for the oxo complexes (Mo16OCl4, (Mo18OCl4)?, (Mo16OCl5)2? and (Mo18OCl5)2?. Force constants have been evaluated for the four- and five-coordinate complexes. The significance of the results is discussed in terms of the metalligand bonding involved in these species.  相似文献   

2.
UV photolysis of [CpFeII(CO)3]+ PF66? (I) or [CpFeII6-toluene)]+ PF6?? (II) in CH3CN in the presence of 1 mole of a ligand L gives the new air sensitive, red complexes [CpFeII(NCCH3)2L]+PF6? (III, L = PPh3; IV; L = CO; VIII, L = cyclohexene; IX, L = dimethylthiophene) and the known air stable complex [CpFeII(PMe3)2(NCMe)]+ PF6? (V). The last product is also obtained by photolysis in the presence of 2 or 3 moles of PMe3. In the presence of dppe, the known complex [CpFeII (dppe)(NCCH3)]+ (XI) is obtained. Complex III reacts with CO under mild conditions to give the known complex [CpFe(NCCH3)(PPh3)CO]+ PF6? (X). UV photolysis of I in CH3CN in the presence of 1-phenyl-3,4-dimethylphosphole (P) gives [CpFeIIP3]+ PF6? (XII); UV photolysis of II in CH2Cl2 in the presence of 3 moles of PMe3 or I mole of tripod (CH3C(CH2Ph2)3) provides an easy synthesis of the known complexes [CpFeII(PMe3)3]+ PF6? (VII) or [CpFeIIη3-tripod]+ PF6t- (XIII). Since I and II are easily accessible from ferrocene, these photolytic syntheses provide access to a wide range of piano-stool cyclopentadienyliron(II) cations in a 2-step process from ferrocene.  相似文献   

3.
Thermal properties of organoindium thiolates were investigated by means of thermogravimetric (TG) and differential thermal (DT) analysis. Dibutyl-indium propylthiolates (Bun2InSPrn, Bun2InSPri, Bui2InSPrn and Bui2InSPri) decomposed up to 280°C along with an exothermic DT peak and gave indium(I) sulfide (InS) powders. Although the arylthiolate Bun2InSPh also afforded InS powders, it decomposed at a slightly higher temperature. In contrast, the dithiolate and the dithiocarbamate complexes [BunIn(SPri)2 and In (S2CNBu2)3] gave indium(III) sulfide (In2S3) powders.  相似文献   

4.
Diatomic halogens are studied with UV photoelectron spectroscopy using new techniques to preserve high resolution even for reactive species. For the first time vibrational structure is observed on the 2Πu,i (i = 1/2,3/2) states (F2+, Cl2+), the 2Σg+ states (F2+, Cl2+) and the Br2+ (2Πu,32) state. On the 2Πu,i states (F2+, Cl2+, Br2+) spin-orbit splitting is resolved. Indications for a small potential barrier on the F2+ (2Πu,i) state for large internuclear distances are found. A new value for the spin-orbit splitting of the Cl2+(2Πg) state is presented (= ?725 cm?1). The complementary nature of optical emission and photoelectron spectroscopy for small ions is demonstrated leading to a more complete picture of the F2+ (2Πu,i) and Cl2+ (2Πu,i) ionic states.  相似文献   

5.
Using [Ga(C6H5F)2]+[Al(ORF)4]?( 1 ) (RF=C(CF3)3) as starting material, we isolated bis‐ and tris‐η6‐coordinated gallium(I) arene complex salts of p‐xylene (1,4‐Me2C6H4), hexamethylbenzene (C6Me6), diphenylethane (PhC2H4Ph), and m‐terphenyl (1,3‐Ph2C6H4): [Ga(1,4‐Me2C6H4)2.5]+ ( 2+ ), [Ga(C6Me6)2]+ ( 3+ ), [Ga(PhC2H4Ph)]+ ( 4+ ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+ ( 52+ ). 4+ is the first structurally characterized ansa‐like bent sandwich chelate of univalent gallium and 52+ the first binuclear gallium(I) complex without a Ga?Ga bond. Beyond confirming the structural findings by multinuclear NMR spectroscopic investigations and density functional calculations (RI‐BP86/SV(P) level), [Ga(PhC2H4Ph)]+[Al(ORF)4]?( 4 ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+{[Al(ORF)4] ?}2 ( 5 ), featuring ansa‐arene ligands, were tested as catalysts for the synthesis of highly reactive polyisobutylene (HR‐PIB). In comparison to the recently published 1 and the [Ga(1,3,5‐Me3C6H3)2]+[Al(ORF)4]? salt ( 6 ) (1,3,5‐Me3C6H3=mesitylene), 4 and 5 gave slightly reduced reactivities. This allowed for favorably increased polymerization temperatures of up to +15 °C, while yielding HR‐PIB with high contents of terminal olefinic double bonds (α‐contents=84–93 %), low molecular weights (Mn=1000–3000 g mol?1) and good monomer conversions (up to 83 % in two hours). While the chelate complexes delivered more favorable results than 1 and 6 , the reaction kinetics resembled and thus concurred with the recently proposed coordinative polymerization mechanism.  相似文献   

6.
The assembly of [Cd(L1)] {[L1]3— = N[CH2CH2N=C(CH3)COO]3} into the tetranuclear cluster {[Cd(L1)]Na(H2O)2}2 in the presence of Na+ is mediated by Na+‐carboxylate interactions; in contrast In3+ and Fe3+ induce the partial hydrolysis of [L1]3— to afford the complexes [In(L2)Cl] and {[Fe(L2)]2O} {[L2]2— = N[CH2CH2NH2][CH2CH2N=C(CH3)COO]2} which aggregate via intermolecular H‐bonding.  相似文献   

7.
Reactions of R1SnCl3 (R1=CMe2CH2C(O)Me) with (SiMe3)2Se yield a series of organo‐functionalized tin selenide clusters, [(SnR1)2SeCl4] ( 1 ), [(SnR1)2Se2Cl2] ( 2 ), [(SnR1)3Se4Cl] ( 3 ), and [(SnR1)4Se6] ( 4 ), depending on the solvent and ratio of the reactants used. NMR experiments clearly suggest a stepwise formation of 1 through 4 by subsequent condensation steps with the concomitant release of Me3SiCl. Furthermore, addition of hydrazines to the keto‐functionalized clusters leads to the formation of hydrazone derivatives, [(Sn2(μ‐R3)(μ‐Se)Cl4] ( 5 , R3=[CMe2CH2CMe(NH)]2), [(SnR2)3Se4Cl] ( 6 , R2=CMe2CH2C(NNH2)Me), [(SnR4)3Se4][SnCl3] ( 7 , R4=CMe2CH2C(NNHPh)Me), [(SnR2)4Se6] ( 8 ), and [(SnR4)4Se6] ( 9 ). Upon treatment of 4 with [Cu(PPh3)3Cl] and excess (SiMe3)2Se, the cluster fragments to form [(R1Sn)2Se2(CuPPh3)2Se2] ( 10 ), the first discrete Sn/Se/Cu cluster compound reported in the literature. The derivatization reactions indicate fundamental differences between organotin sulfide and organotin selenide chemistry.  相似文献   

8.
Iron(II), (Fe(H2O)62+, (FeII) participates in many reactions of natural and biological importance. It is critically important to understand the rates and the mechanism of FeII oxidation by dissolved molecular oxygen, O2, under environmental conditions containing bicarbonate (HCO3), which exists up to millimolar concentrations. In the absence and presence of HCO3, the formation of reactive oxygen species (O2, H2O2, and HO⋅) in FeII oxidation by O2 has been suggested. In contrast, our study demonstrates for the first time the rapid generation of carbonate radical anions (CO3) in the oxidation of FeII by O2 in the presence of bicarbonate, HCO3. The rate of the formation of CO3 may be expressed as d[CO3]/dt=[FeII[[O2][HCO3]2. The formation of reactive species was investigated using 1H nuclear magnetic resonance (1H NMR) and gas chromatographic techniques. The study presented herein provides new insights into the reaction mechanism of FeII oxidation by O2 in the presence of bicarbonate and highlights the importance of considering the formation of CO3 in the geochemical cycling of iron and carbon.  相似文献   

9.
Novel termetallic isopropoxides are reported which may be represented by the general formulae: [(PriO)3M(μ-OPri)2Be(μ-OPri)2Al(OPri)2], [(PriO)2M(μ-OPri)2Be(μ-OPri)2Al(OPri)2]2 [where M = Ti(IV), Zr(IV) and Hf(IV)] and [(PriO)4M(μ-OPri)2Be(μ-OPri)2Al(OPri)2] [where M = Nb(V) and Ta(V)]. Attempts to synthesize derivatives with the general formula, [(PriO)7M2(μ-OPri)2Be(μ-OPri)2Al(OPri)2] [where M = Ti(IV), Zr(IV) or Hf(IV)], were unsuccessful and in all such cases a mixture of M(OPri)4 and [(PriO)3M(μ-OPri)2Be(μ-OPri)2Al(OPri)2] was obtained. All these derivatives are soluble in common organic solvents and with the exception of titanium(IV) derivatives, they can be volatilised without noticeable disproportionation. These products have been characterized by elemental analyses, molecular weights, IR, 1H NMR and (in representative cases) mass spectral studies also.  相似文献   

10.
Ionization-fragmentation of uranium(IV) tetraborohydride, U(BH4)4, by He+ and by N+/N2+ yields, predominantly, U(BH5)+ and U(B2H8)+, respectively. Attachment of thermal electrons yields U(BH4)4? and ions of 1, 2, and 3 mass units less. Fluoride transfer with SF6?, BF4?, and UFn? (n = 5–7) and reactions with other small ions (O?, O2?, NO2?, F?, Cl?, O2+) are described.  相似文献   

11.
Reactions of Al(OPri)3 with LH2 =?[R′C(NYOH)CHC(R)OH] R=R′=CH3, Y =?(CH2)2 (L1H2); R =?CH3, R′ =?C6H5, Y =?(CH2)2 (L2H2); R =?R′ =?CH3, Y =?(CH2)3 (L3H2); R =?CH3, R′ =?C6H5, Y =?(CH2)3 (L4H2), in 1 : 2 molar ratio give mononuclear derivatives of aluminium AlLLH (1a1d). Equimolar reactions of AlLLH with M(OPri)3 (M =?Al and B) yield homo- and hetero-dinuclear derivatives AlLLM(OPri)2 (M=Al=2a2d M=B=3a3d). Reaction of 2a with L1H2 affords AlL1L1AlL1 (4). All these derivatives have been characterized by elemental analysis, molecular weight measurements and plausible structures have been suggested on the basis of IR, NMR [1H, 13C, 27Al and 11B] spectral data and FAB-mass studies of 2b and 3b. Schiff base L1H2 and its mononuclear derivative with aluminium (AlL1L1H) have been screened for their antibacterial activity against Escherischia coli and Bacillus subtilis.  相似文献   

12.
The modeling of the molecular and electronic structures of the following mono- and biosmium complexes of fullerene C60 was performed by quantum chemical methods (MNDO/PM3 and DFT/PBE): (??2-C60)[Os(PPh3)2(CO)CNMe], (??2,??2-C60)[Os(PPh3)2(CO)(CNMe)]2, (??2-C60)[Os(PH3)2(CO)H], (??2,??2-C60)[Os(PH3)2(CO)H]2, (??2-C60)[Os(PH3)2(CO)CNMe], (??2,??2-C60)[Os(PH3)2(CO)CNMe]2, and (5-C60H5)[Os(C5H5)], (5, 5-C60H10)[Os(C5H5)]2.The osmium atoms in the first six complexes are ??2-coordinated by fullerene C60. In the last two complexes, the ??5-coordination mode is observed. The structures of the radical anions of these complexes were calculated. The energies of the frontier orbitals were evaluated. The acceptor properties of the complexes are discussed. The electron affinities were estimated in two ways: from the energy of the lowest unoccupied molecular orbital (LUMO) and as the energy difference between the neutral molecule and its radical anion.  相似文献   

13.
The distribution coefficients (DC) for HgCl 4 2– , Hg(SO4) 2 2– , Hg(NO3) 4 2– , Ag+, Ag(SCN) 2 and Ag(NH3) 2 + between aqueous solutions and Dowex A-1 were measured in varying hydrogen ion concentrations. The DC of Ag+ in the NO 3 media was very low (4 to 6). The DC for the Ag(SCN) 2 complex decreased as pH increased. The Ag(NH3) 2 + complex had a constant DC of about 65 from pH 8 and above. The trend observed for three mercury complexes in HCl, H2SO4 and HNO3 was similar; the DC decreased steadily from 0.1M to 6M. The HgCl 4 2– complex had the highest DC (9000) while the Hg(NO3) 4 2– complex had the lowest DC (2000).  相似文献   

14.
Dynamics of refractory atom reactions have been studied with a crossed beam apparatus combining two pulsed, supersonic molecular beam sources, a pulsed UV laser for creating the refractory atoms in the gas phase by laser ablation, and a pulsed dye laser to probe the reaction products by laser-induced fluorescence. Examples of the A1(2Pj) + O2(X3g)→ A10(X2+) + O(3Pj), Mg(1So) + N2O(X1+) → MgO(X1+,a3Π) + N2(X1g+) andC(3Pj) + NO(X2Πr) → CN(X2+) + 0(3Pj) systems are given. Comparisons with the studies performed using the conventional steady-state beam approach are made.  相似文献   

15.
The addition of the ·But (R1) and ·P(O)(OPri)2 (R2) radicals to pyrrolidino[60]fullerenes C60CH2NMeCHX (X = C6H4N(CH2CH2Cl)2, 2,6-(But)2C6H2OH, PhC6H4, and indol-3-yl) was studied by ESR spectroscopy. The rate constants of R1 radical addition to these compounds and dimerization of spin-adducts of the R1 radicals with pyrrolidino[60]fullerenes were determined. Pyrrolidino[60]fullerenes manifest considerably higher reactivity toward the R1 radicals than fullerene C60 and methanofullerenes C60CX1X2 (X1 = X2 = CO2Et; X1 = CO2Me, X2 = OP(OMe)2, X1 = X2 = OP(OEt)2).  相似文献   

16.
Upconversion luminescence tuning of β‐NaYF4 nanorods under 980 nm excitation has successfully been achieved by tridoping with Ln3+ ions with different electronic structures. The effects of Ce3+ ions on NaYF4:Yb3+/Ho3+ as well as Gd3+ ions on NaYF4:Yb3+/Tm3+(Er3+) have been studied in detail. By tridoping with Ce3+ ions, not only were unusual 5G55I7 and 5F2/3K85I8 transitions from Ho3+ ions and 5d→4f transitions from Ce3+ ions observed in NaYF4:Yb3+/Ho3+ nanorods, but also an increase in the intensity of 5F55I8 relative to 5S2/5F45I8 with increasing Ce3+ concentration, which can be attributed to efficient energy transfers of 5I6 (Ho)+2F5/2 (Ce)→5I7 (Ho)+2F7/2 (Ce) and 5S2/5F4 (Ho)+2F5/2 (Ce)→5F5 (Ho)+2F7/2 (Ce). Interestingly, with increasing pump power density, the luminescence of NaYF4:Yb3+/Ho3+ nanorods is always dominated by the 5S2/5F45I8 transition, whereas the luminescence of Ce3+‐tridoped NaYF4:Yb3+/Ho3+ nanorods is dominated by the 5S2/5F45I8 and 5G55I7 transitions in turn. These observations are discussed on the basis of a rate equation model. Furthermore, Gd3+‐tridoped NaYF4:Yb3+/Tm3+(Er3+) nanorods can emit multicolor upconversion emissions spanning from the UV to the near‐infrared under 980 nm excitation. 6P5/28S7/2 (≈306 nm) and 6P7/28S7/2 (≈311 nm) transitions from Gd3+ ions were observed. In addition to the aforementioned luminescence properties, these Gd3+‐tridoped nanorods also exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 or 5 K.  相似文献   

17.
A novel AuICoIII coordination system that is derived from the newly prepared [Co(D ‐nmp)2] ( 1 ; D ‐nmp=N‐methyl‐D ‐penicillaminate) and a gold(I) precursor AuI is reported. Complex 1 acts as a sulfur‐donating metallaligand and reacts with the gold(I) precursor to give [Au2Co2(D ‐nmp)4] ( 2 ), which has an eight‐membered AuI2CoIII2 metallaring. Treatment of 2 with [Au2(dppe)2]2+ (dppe=1,2‐bis(diphenylphosphino)ethane) leads to the formation of [Au4Co2(dppe)2(D ‐nmp)4]2+ ( 3 2+), which consists of an 18‐membered AuI4CoIII2 metallaring that accommodates a tetrahedral anion (BF4, ClO4, ReO4). In solution, the metallaring structure of 3 2+ is readily interconvertible with the nine‐membered AuI2CoIII metallaring structure of [Au2Co(dppe)(D ‐nmp)2]+ ( 4 +); this process depends on external factors, such as solvent, concentration, and nature of the counteranion. These results reveal the lability of the Au S and Au P bonds, which is essential for metallaring expansion and contraction.  相似文献   

18.
5-Cyclopentadienyl)(η5-pyrrolyl)titanium(IV) dichloride, (η5-indenyl)-(η5-pyrrolyl)titanium(IV) dichloride and (η5-cyclopentadienyl)(η5-indenyl)-titanium(IV) dichloride, when treated with 8-hydroxyquinoline (oxine) in aqueous medium form ionic derivatives of the type, [(η5-R)(η5-R′)TiL]+ Cl- (R = C5H5, C9H7, R′ = C4H4N; R = C5H5, R′ = C9H7; L is the conjugate base of (oxine). A number of halide and complex halogeno anions present in aqueous solution were isolated as salts of these ionic complexes giving derivatives of the type, [(η5-R)(η5-R′)TiL]+ X- (X = Br-, I-, ZnCl3(H2O)-, CdCl42-, HgCl3-). Conductivity measurements in nitrobenzene solution indicate that these complexes are electrolytes. Both the IR and 1H NMR spectral studies demonstrate that the ligand L is chelating. Consequently there is tetrahedral coordination about the titanium(IV) ion.  相似文献   

19.
Reaction of the Ir(I)-Xantphos complex [Ir(κ2-Xantphos)(COD)][BArF4] (Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, ArF = C6H3(CF3)2) with H2 in acetone or CH2Cl2/MeCN affords the Ir(III)-hydrido complexes [Ir(κ3-Xantphos)(H)2(L)][BArF4], L = acetone or MeCN, whereas in non-coordinating CH2Cl2 solvent dimeric [Ir(κ3-Xantphos)(H)(μ-H)]2[BArF4]2 is formed. A common intermediate in these reactions that invokes a (σ, η2-C8H13) ligand is reported. Addition of excess tert-butylethene (tbe) to [Ir(κ3-Xantphos)(H)2(MeCN)][BArF4] results in insertion of a hydride into the alkene to form [Ir(κ3-Xantphos)(MeCN)(CH2CH2C(CH3)3)(H)][BArF4], an Ir(III) alkyl-hydrido-Xantphos complex. This reaction is reversible, and heating (80 °C) results in the reformation of [Ir(κ3-Xantphos)(H)2(MeCN)][BArF4] and tbe. These complexes have been characterised by NMR spectroscopy, ESI-MS and single-crystal X-ray diffraction. They show variable coordination modes of the Xantphos ligand: cis2-P,P, fac3-P,O,P and mer3-P,O,P with the later coordination mode like that found in related PNP-pincer complexes.  相似文献   

20.
In aqueous H2SO4, Ce(IV) ion oxidizes rapidly Arnold's base((p-Me2NC6H4)2CH2, Ar2CH2) to the protonated species of Michler's hydrol((p-Me2NC6H4)2CHOH, Ar2CHOH) and Michler's hydrol blue((p-Me2NC6H4)2CH+, Ar2CH+). With Ar2CH2 in excess, the rate law of the Ce(IV)-Ar2CH2 reaction in 0.100 M H2SO4 is expressed -d[Ce(IV)]/dt = kapp[Ar2CH2]0[Ce(IV)] with kapp = 199 ± 8M?1s?1 at25°C. When the consumption of Ce(IV) ion is nearly complete, the characteristic blue color of Ar2CH+ ion starts to appear; later it fades relatively slowly. The electron transfer of this reaction takes place on the nitrogen atom rather than on the methylene carbon atom. The dissociation of the binuclear complex [Ce(III)ArCHAr-Ce(III)] is responsible for the appearance of the Ar2CH+ dye whereas the protonation reaction causes the dye to fade. In highly acidic solution, the rate law of the protonation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kobs[Ar2CH+] where Kobs = ((ac + 1)[H*] + bc[H+]2)/(a + b[H+]) (in HClO4) and kobs= ((ac + 1 + e[HSO4?])[H+] + bc[H+]2 + d[HSO4?] + q[HSO4?]2/[H+])/(a + b[H+] + f[HSO4?] + g[HSO4?]/[H+]) (in H2SO4), and at 25°C and μ = 0.1 M, a = 0.0870 M s, b = 0.655 s, c = 0.202 M?1s?1, d = 0.110, e = 0.0070 M?1, f = 0.156 s, g = 0.156 s, and q = 0.124. In highly basic solution, the rate law of the hydroxylation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kOH[OH?]0[Ar2CH+] with kOH = 174 ± 1 M?1s?1 at 25°C and μ = 0.1 M. The protonation reaction of Michler's hydrol blue takes place predominantly via hydrolysis whereas its hydroxylation occurs predominantly via the path of direct OH attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号