首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of pressure of the radiation-induced polymerization of ethylene in tert-butyl alcohol were studied. The reaction was carried out by use of a reactor with a capacity of 100 ml under the following conditions; pressure, 60–400 kg/cm2; temperature, 24 ± 3°C; dose rate, 2.0 × 104?1.6 × 105 rad/hr; amount of medium (tert-butyl alcohol containing 5 vol-% water), 70 ml. The results of polymerization were analyzed by a kinetical treatment based on a reaction mechanism with both first- and second-order terminations for the concentration of propagating, radical. On the basis of the kinetical treatment the rate constants of each elementary reaction at several pressures were determined, and the activation volumes of elementary reactions were obtained and are discussed in connection with the reaction mechanism. Consequently, the rate constants of propagation, first-order termination, and second-order termination at pressure p and at 24°C were expressed by,   相似文献   

2.
The kinetics of the radiation-induced polymerization of ethylene in the presence of various amounts of medium (tert-butyl alcohol containing 5 vol-% of water) was studied, and the effect of the amount of medium on the polymerization was investigated. The polymerization was carried out by use of a reactor of 100 ml capacity under the following conditions: temperature, 24 ± 3°C; pressure, 200 kg/cm2; dose rate, 2.0 × 104?1.6 × 105 rad/hr. The amount of polymerized monomer and the rate of polymerization were maximum when about 50 ml of the medium was used. Data obtained with the use of 30, 50, and 90 ml of the medium were analyzed kinetically and the rate constants of each elementary reaction were determined by the method based on a reaction mechanism which contains both first- and second-order terminations for the concentration of propagating radical. These results were compared with those obtained with the use of 70 ml of the medium already reported in the previous paper. The dose rate exponents of the rate of polymerization were about 0.7–0.8. It was found that G values for the initiation of ethylene and the medium were 1.5 and 3.8, respectively, and the rate of propagation was proportional to the fugacity of ethylene. It is supposed that the medium plays an important role in the first-order termination, because the apparent rate constant of the reaction was larger when a larger amount of medium was used.  相似文献   

3.
The gamma-radiation-induced polymerization of ethylene in the presence of 13–30 ml of tert-butyl alcohol was carried out under a pressure of 120–400 kg/cm2 at a dose rate of 1 × 103 to 2.5 × 104 rad/hr at 30°C with a 100 ml reactor. The polymerization rate and the molecular weight of the polymer increased with reaction time and pressure and decreased with amount of tert-butyl alcohol. The polymer yield increased almost proportionally with the dose rate, while the molecular weight was almost independent of it. These results were graphically evaluated, and the rate constants of initiation, propagation, and termination for various conditions were determined. No transfer was observed. On the basis of these results the role of tert-butyl alcohol in the polymerization is discussed.  相似文献   

4.
The effect of dose rate on the rate of polymerization and molecular weight distribution of radiation-induced polymerization of styrene adsorbed on silica gel was studied in a wide dose rate range of 4.4 × 104 to 3 × 108 rad/hr by γ rays of 60Co and electron beams with a Cockcroft-Walton-type accelerator. Dose rate dependence on the initial rate of polymerization was about 1 below 3 × 107 rad/hr, and it decreased gradually at high dose rates. Throughout the dose rate range, graft polymerizations and homopolymerizations by cationic and radical mechanisms proceeded simultaneously. Dose rate dependence of the cationic polymerization was 1 below 3 × 107 rad/hr, while dose rate dependence of the radical polymerization was 0.65 below 3 × 107 rad/hr. At high dose rates, molecular weight and fraction of graft polymer decreased, and fraction of cationic polymerization increased. A very high-molecular-weight graft polymer was formed above 4.4 × 105 rad/hr at the initial stage of the polymerization. The dose rate dependence of this polymerization was larger than 1 and decreased with increase in dose rate. The polymerization seems to be related to an excitation of monomer or growing chain.  相似文献   

5.
The effects of temperature on the radiation-induced polymerization of ethylene in bulk and in the presence of ethyl alcohol, n-butyl alcohol, tert-butyl alcohol, cyclohexane, 2,2,4-trimethylpentane, and 2,2,5-trimethylhexane were studied. The changes of the amounts of polymerized monomer with the reaction temperature were different from each other in these reaction systems, especially in the range lower than 60–80°C. At temperatures lower than 60–80°C, as the reaction temperature increases, the amount of polymerized monomer decreased in bulk and in the presence of tert-butyl alcohol. The amount was almost constant in the presence of ethyl alcohol and 2,2,4-trimethylpentane, and it increased in the presence of n-butyl alcohol, cyclohexane, and 2,2,5-trimethylhexane. However, in the temperature range higher than 60–80°C, the amount of polymerized monomer increased with increasing temperature in every reaction system except for bulk polymerization. The molecular weight of polymer decreased with increasing temperature in every reaction system except at temperatures lower than 25°C. The molecular weight of polymer formed in bulk, in tert-butyl alcohol, and also in 2,2,4-trimethylpentane were relatively higher than that in other reaction systems. A bimodal molecular weight distribution was observed for the polymer formed in bulk and in tert-butyl alcohol at 40–60°C. These results are discussed in connection with the heterogeneity of the reaction system. The differences due to temperature in each reaction system are explained as due to the difference in affinity of the reaction system for the propagating chain and in the facility of chain transfer to the medium.  相似文献   

6.
Emulsion and microemulsion polymerization of styrene were initiated with a gamma ray to study the effect of dose rate on polymerization. In both systems, there is an apparent plateau of polymerization rate in the curve of reaction rate vs. conversion. It was shown that emulsion polymerization conformed to the Smith–Ewart theory very well. Changing the dose rate in interval 2 had no great influence on polymerization rate, but it changed the average lifetime of radicals in polymer particles and affected the molecular weight of polymer produced. For microemulsion polymerization it was assumed that in the plateau it is the number of growing polymer particles being kept constant, not the number of polymer particles. When the dose rate was changed while the polymerization came into the constant period, the polymerization rate and the molecular weight of the polymer varied with the dose rate. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 257–262, 1998  相似文献   

7.
Radiation-induced emulsion polymerization of ethylene with potassium myristate as an emulsifier was studied in connection with the kinetics and the mechanism. The molecular weight of polymer was relatively low, of the order of 103, when a sufficient amount of emulsifier was used. However, polyethylene gel was produced in the absence of a sufficient amount of emulsifier. The rate of polymerization was proportional to the 0.5 power of dose rate and increased slightly with increasing emulsifier concentration. The rate of seeded polymerization followed a similar trend to that for conventional polymerization. Kinetic analysis of these results suggests that the escape of radicals produced by chain transfer of propagating radical with the emulsifier and the monomer from polymer particles into the aqueous phase plays an important part in the rate of polymerization. The melting temperature and the crystallinity of the polymer significantly decreased with increasing polymerization temperature in the range 40–60°C.  相似文献   

8.
Numerical simulation of radiation-induced conductivity in polymers upon long-term irradiation on the basis of the generalized Rose-Fowler-Vaisberg model, which allows for both dipolar carrier transport and generation of radiation traps during irradiation, was performed. The unusual properties of radiation-induced conductivity, such as the appearance of a maximum on current transients, the absence of a steady state, and a substantial difference between these curves for the first and subsequent irradiation, are rationalized in terms of the formation of free radicals, the major feature of radiolysis in the chemical aspect. This interpretation does not require the involvement of degradation or crosslinking processes, unlike other interpretations that appear in the literature. With the use of low-density polyethylene as an example, it was shown that radiation-induced conductivity both upon pulse and continuous irradiation can satisfactorily be described with the unified set of parameters of the generalized Rose-Fowler-Vaisberg model.  相似文献   

9.
The radiation-induced heterogeneous polymerization of ethylene in ethyl alcohol was carried out in a reactor with a capacity of 100 ml under the following reaction conditions: temperature, 24 ± 3°C; pressure, 200–400 kg/cm2; amount of ethyl alcohol, 30–70 ml; dose rate, 3.7 × 104?1.05 × 105 rad hr. The effects of amount of ethyl alcohol, pressure, and dose rate on the rate of polymerization at the steady state, the amount of polymerized monomer, the molecular weight of polymer, and the number of polymer chains were studied compared with the results obtained in the polymerization in tert-butyl alcohol. It was found that there is an acceleration period in the early stage of reaction followed by a steady state. The rate of polymerization was maximum when about 50 ml of ethyl alcohol was used. The molecular weight of polymer increased with a decrease in the amount of ethyl alcohol. The dependences of pressure (p) and dose rate (I) on the rate of polymerization at steady state (Rs) and the molecular weight of polymer (M?n) were expressed as follows; Rsp0.74, M?np0.3?0.4, Rs ∝ I0.9 and M?nI?0.1 ?0.0. The results were analyzed by a kinetic treatment based on a reaction mechanism containing both first-and second-order terminations. The rate constant of first-order termination by radical occlusion was considerably larger than that in the polymerization in tert-butyl alcohol, because the affinity of ethyl alcohol for polyethylene is smaller than that of tert-butyl alcohol. It was found that chain transfer to ethyl alcohol takes place easily and the G value of ethyl alcohol for initiation is larger than 1.5.  相似文献   

10.
11.
The influence of various solvents on radiation-induced cationic (grafting of vinyl-n-butyl ether onto polyethylene) and anionic (grafting of 2-methyl-5-vinylpyridine onto polyethylene) graft polymerization was studied. This ionic grafting was performed in thoroughly dried systems at room temperature. It was established that electron-acceptor solvents promote cationic grafting but that electron-donor solvents promote the anionic. A clear correlation between the donor number of solvents and grafting value by the anionic mechanism was shown. There was no correlation between dielectric constants and grafting values. The reaction orders, according to monomer concentration by 2-methyl-5-vinylpyridine grafting in various solvents, were equal to approximately 1.5 and 2 for the radical and anionic mechanisms, respectively. The effect of solvents on radiation-induced ionic graft polymerization is discussed. The results of this study indicate the correct choice of solvents for radiation-induced ionic grafting.  相似文献   

12.
Gamma-radiation-induced polymerization of ethylene in alcohols such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and n-pentyl alcohols was carried out under a pressure of 400 kg./cm.2at 30°C. at a dose rate of 1.4 × 105 rad/hr. in a batch reactor of 100 ml. capacity. The yield and molecular weight of polymer formed in the alcohols (except tert-butyl alcohol) were much lower than those of the bulk polymerization under the same conditions, whereas the addition of tert-butyl alcohol increased the yield and reduced the molecular weight. From the infrared spectra of the polymers and those of the bromination products it was concluded that only primary OH exists in the polymer formed in methyl alcohol and that both primary and secondary OH are in the polymer formed in other primary alcohols. Both secondary and tertiary OH were observed in the polymer when the secondary alcohols were used, and only tertiary OH in the case of tert-butyl alcohol. These polymers were found to contain small amounts of vinylidene unsaturation and methyl group. On the basis of these results the roles of the alcohols in the polymerization are discussed.  相似文献   

13.
The polymerization in bulk of racemic tert-butyl thiirane with a chiral initiator resulting from the reaction between diethylzinc and (? )3,3-dimethyl-1,2-butanediol produces an optically active polymer by preferential consumption of R enantiomer. The unreacted monomer is enriched in S enantiomer. The relative rate r of consumption of R enantiomer versus S enantiomer is as high as 2.8. Obtained polymer could be separated into two crystalline fractions: an optically active fraction, formed from regular sequences of R type enantiomeric units, and an optically inactive fraction which corresponds to a racemate. Experimental results are consistent with a stereospecific mechanism of addition, the two enantiomers being chosen by two different type of sites. The stereoelective process is due to an unequal number of these two types of sites.  相似文献   

14.
The effects of three different variables (initiator concentration, polarity of the solvent and reaction temperature) on the rate of dispersion polymerization of styrene in alcohols have been investigated. It was found that the rate of polymerization increases with the initiator (AIBN) concentration at the 0% conversion level and becomes independent of it at higher monomer conversions. More significant was the result that the rate was also found to increase with solvent polarity. This is consistent with thermodynamic equilibrium calculations which account for the partitioning behavior of monomer and solvent in both the solution and the particle phases. The results further suggest the existence of two different kinetic regions: one at low conversions, where the reaction takes place primarily in the solution phase, and one at high conversions, where the reaction takes place primarily in the particle phase. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2907–2915, 1997  相似文献   

15.
The graft polymerization of styrene onto preirradiated poly(ethylene oxide) was studied. From the measurement of swelling of the polymer in various solvents the solubility parameter of poly(ethylene oxide) was estimated as 9.3. The kinetic analysis of the reaction indicated that the graft polymerization was diffusion controlled. Kinetic parameters of the reaction such as \documentclass{article}\pagestyle{empty}\begin{document}$\int_0^t {R_i} dt,k_{p,} k_{tr}$\end{document}, and kt were obtained in poly(ethylene oxide)-styrene system and compared with those in poly(isobutylene oxide)-styrene system.  相似文献   

16.
The effect of reaction conditions on the rate of radiation-induced emulsion polymerization of ethylene was studied by use of a 500-ml autoclave. Among various kinds of emulsifiers, a series of potassium salts of fatty acids gave high rates of the polymerization. The polymerization was inhibited by the presence of oxygen, but the rate of polymerization followed by the induction period was not influenced by the initial presence of oxygen. Stirring rate and the monomer: water ratio did not affect the rate of polymerization. The rate of polymerization was maximum at about 80°C, and number-average molecular weight was influenced by the temperature in a similar manner as the rate of polymerization. This suggests that the change of mobility of propagating radical in the polymer particle changes the rate of termination reaction. The rate of polymerization was proportional to the 1.7 power of the reaction pressure.  相似文献   

17.
The effect of shear rate on the radical polymerization of methyl methacrylate at 50°, in bulk as well as in solution, has been studied. The rate of polymerization increases by as much as 15% at high shear rates. This increase is explained in terms of changes in the initiator efficiency with shear rate.  相似文献   

18.
19.
Kazakov  P. V.  Demina  E. I. 《Russian Chemical Bulletin》2002,51(11):2134-2135
A reaction of acetylene with tert-butyl alcohol in the presence of sulfuric acid leads to tert-butylacetylene.  相似文献   

20.
Analyses of the oligomers formed in radiation-induced polymerization of purified styrene were performed. The principal dimeric products were cis- and trans-diphenyl-cyclobutane with a relatively small amount of 1-phenyltetralin; the trimeric products were the optical isomers of 1-phenyl-4-[1′-phenylethyl-(1′)]-tetralin in gamma-ray and 60 MeV proton irradiation. Oligomer formation increased with increasing dose, but more gradually than the linear formation of high polymer with dose. The yield was 0.25–3.1 μmol/J at low doses and decreased to an asymptotic value of 0.15 at higher doses. It appears that oligomers act as chain transfer agents during the polymerization reaction which would account for the observed decrease in molecular weight of the high polymer with increase in dose. Although the thermal and radiation-induced polymerization of styrene have different initiation steps, the oligomers produced by both reactions are similar in composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号