首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly efficient, simple and green procedure for the synthesis of β-enaminones and β-enamino esters is described. The reaction of aromatic and aliphatic amines with β-dicarbonyl compounds using catalytic amount of silica-supported LiHSO4 (LiHSO4/SiO2) under solvent-free conditions at 80 °C affords the title compounds in high to excellent yields and in short reaction times.  相似文献   

2.
Two oxoborates, (Pb3O)2(BO3)2MO4 (M=Cr, Mo), have been prepared by solid-state reactions below 700 °C. Single-crystal XRD analyses showed that the Cr compound crystallizes in the orthorhombic group Pnma with a=6.4160(13) Å, b=11.635(2) Å, c=18.164(4) Å, Z=4 and the Mo analog in the group Cmcm with a=18.446(4) Å, b=6.3557(13) Å, c=11.657(2) Å, Z=4. Both compounds are characterized by one-dimensional chains formed by corner-sharing OPb4 tetrahedra. BO3 and CrO4 (MoO4) groups are located around the chains to hold them together via Pb–O bonds. The IR spectra further confirmed the presence of BO3 groups in both structures and UV–vis diffuse reflectance spectra showed band gaps of about 1.8 and 2.9 eV for the Cr and Mo compounds, respectively. Band structure calculations indicated that (Pb3O)2(BO3)2MoO4 is a direct semiconductor with the calculated energy gap of about 2.4 eV.  相似文献   

3.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

4.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

5.
The compounds NiNi(CN)4·3,5H2O and Ni(NH3)2Ni(CN)4·H2O have been studied to examine the possibility of substituting their H2O or NH3 content by D2O. Contact with D2O was performed after heating the compounds to several temperatures. Depending on the degree of decomposition of the original compounds different ranges of substitution were possible. In such manner the compounds NiNi(CN)4·3,5D2O, NiNi(CN)4·5D2O, Ni(NH3)2Ni(CN)4·D2O, and Ni(D2O)2Ni(CN)4·D2O were prepared and thermally they were less stable than the original ones. The substitution by D2O is in agreement with the sorptive properties of the original tetracyanonickelate against different organic compounds using GC, since these could substitute the guest component and sometimes also the ligands during their decomposition.  相似文献   

6.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

7.
The compounds CeMIn5 (M=Co, Rh, Ir) have been shown to exhibit heavy fermion behavior. In order to better understand this effect and the nature of the observed superconductivity, we have synthesized and characterized the non-magnetic analogs, LaMIn5 (M=Co, Rh, Ir). The structures of LaCoIn5, LaRhIn5, and LaIrIn5 were determined by single-crystal X-ray diffraction. CeMIn5 and LaMIn5 compounds are isostructural and adopt a tetragonal structure with space group P4/mmm, Z=1. Lattice parameters are a=4.6399(4) and c=7.6151(6) Å for LaCoIn5, a=4.6768(3) and c=7.5988(7) Å for LaRhIn5, and a=4.6897(6) and c=7.5788(12) Å for LaIrIn5. We compare these experimental data with band structure computations and examine structural trends that affect the magnetic and transport properties of these compounds.  相似文献   

8.
The crystal structures of compounds with nominal compositions Bi6FeP2O15+x (I), Bi6NiP2O15+x (II) and Bi6ZnP2O15+x (III) were determined from single-crystal X-ray diffraction data. They are monoclinic, space group I2, Z=2. The lattice parameters for (I) are a=11.2644(7), b=5.4380(3), c=11.1440(5) Å, β=96.154(4)°; for (II) a=11.259(7), b=5.461(4), c=11.109(7) Å, β=96.65(1)°; for (III) a=19.7271(5), b=5.4376(2), c=16.9730(6) Å, β=131.932(1)°. Least squares refinements on F2 converged for (I) to R1=0.0554, wR2=0.1408; for (II) R1=0.0647, wR2=0.1697; for (III) R1=0.0385, wR2=0.1023. The crystals are complexly twinned by 2-fold rotation about , by inversion and by mirror reflection. The structures consist of edge-sharing articulations of OBi4 tetrahedra forming layers in the a-c plane that then continue by edge-sharing parallel to the b-axis. The three-dimensional networks are bridged by Fe and Ni octahedra in (I) and (II) and by Zn trigonal bipyramids in (III) as well as by oxygen atoms of the PO4 moieties. Bi also randomly occupies the octahedral sites. Oxygen vacancies exist in the structures of the three compounds due to required charge balances and they occur in the octahedral coordination polyhedron of the transition metal. In compound (III), no positional disorder in atomic sites is present. The Bi-O coordination polyhedra are trigonal prisms with one, two or three faces capped. Magnetic susceptibility data for compound (I) were obtained between 4.2 and 350 K. Between 4.2 and 250 K it is paramagnetic, μeff=6.1 μB; a magnetic transition occurs above 250 K.  相似文献   

9.
The liquid-solid phase diagram of the binary systems AlPO4?M3PO4(M=Li, Na, K) have been established. The additional compounds Na3Al(PO4)2, Na3Al2(PO4)3 and K3Al2(PO4)3 have been found again. A new compound K3Al(PO4)2 is observed. The melting point of Na3PO4 is 1545°C and K3PO4 does not melt up to 1700°C.  相似文献   

10.
11.
Ab initio calculations have been performed on B4H4, B4Cl4 and B4F4 in order to aid our understanding of the bonding in these compounds, which is presumably based on a tetrahedral boron cage. This cage has only 8 electrons and so is less than that expected on the basis of the usual framework electron counting rules. Basis sets with polarisation functions were used at the SCF, CI and CPF levels of theory to confirm that the T d structures are indeed more stable than the D 4h ones. Davidson-Roby population analyses were able to show that many factors, including 3-centre 2-electron bonding and backbonding from the ligand to the boron cage, are of importance in determining the relative stability of the three compounds, of which B4Cl4 is the only one that has yet been observed experimentally.  相似文献   

12.
Single crystals of Tb4MGa12 (M=Pd, Pt) have been synthesized. The isostructural compounds crystallize in the cubic space group , with Z=2 and lattice parameters: a=8.5940(5) and 8.5850(3) Å for Tb4PdGa12 and Tb4PtGa12, respectively. The crystal structure consists of corner-sharing MGa6 octahedra and TbGa3 cuboctahedra. Magnetic measurements suggest that Tb4PdGa12 is an antiferromagnetic metamagnet with a Néel temperature of 16 K, while the Pt analog orders at TN=12 K.  相似文献   

13.
DSC measurements were carried out for [Ni(H2O)6](ClO4)2 (sampleH) and [Ni(D2O)6](ClO4)2 (sampleD) in the temperature range 300–380 K. For both compounds two anomalies on the DSC curves were detected. The results for sampleH are compared to those previously obtained using adiabatic calorimetry method. For both compounds studied in this work the high-temperature transition appears at the same temperature while the low-temperature one is shifted towards higher temperatures in sampleD. Disorder connected with H2O or D2O groups is suggested in the intermediate phase between the low- and high-temperature transitions.  相似文献   

14.
The compounds LnSrScO4, where Ln=La, Ce, Pr, Nd and Sm, have been synthesized. Rietveld profile analysis of powder X-ray diffraction data collected at room temperature reveal that the compounds possess a modified K2NiF4-type structure with orthorhombic cell symmetry formed by tilting of the ScO6 octahedra. Variable temperature (25-1200 °C) powder X-ray diffraction data show that at the highest temperatures the structures of LaSrScO4 and PrSrScO4 transform to the regular tetragonal K2NiF4-structure type but the degree of orthorhombicity (c/a) in the unit cells initially increases on heating for all materials, reaching a maximum near 300 °C. This structural behavior is analyzed in terms of relative ionic radii of the various lanthanides and scandium. A general structural model based on tolerance factors has been developed for the family of materials A2BO4 with various A and B cation sizes.  相似文献   

15.
The crystal structures of five isotypic hexagonal compounds with general formulaMAs4O6 X [M=K, NH4;X=Cl, Br, I; space group: P622;Z=1] were determined from 370 single crystal X-ray data and refined toR values <0.05. The structure type is characterized by neutral charged [As2O3] sheets arranged parallel (00.1). The As atoms of neighbouring two sheets point to each other and the sheets are combined by interlayeredM andX atoms, respectively. TheM atoms are coordinated to twelve oxygen atoms, theX atoms are coordinated to twelve arsenic atoms. In both cases the coordination polyhedron is a hexagonal prism. The compounds were synthesized by thermal treatments of cubic As2O3 and potassium or ammonium haloids in a saturated aqueous solution of potassium acetate resp. ammonia [500 K, saturation vapour pressure].
Die Verbindungen KAs4O6 X (X=Cl, Br, I) und NH4As4O6 X (X=Br, I): Hydrothermalsynthese und Strukturbestimmung
Zusammenfassung Die Kristallstrukturen der fünf isotypen hexagonalen Verbindungen mit der allgemeinen FormelMAs4O6 X [M=K, NH4;X=Cl, Br, I; Raumgruppe: P622;Z=1] wurden anhand von 370 Einkristall-Röntgendaten bestimmt und aufR-Werte <0.05 verfeinert. Der Strukturtyp ist ausgezeichnet durch neutrale [As2O3]-Schichten, die parallel (00.1) angeordnet sind. Die As-Atome zweier benachbarter Schichten weisen jeweils aufeinander zu, und die Schichten selbst werden durch zwischengelagerteM- bzw.X-Atome verbunden. DieM-Atome werden jeweils von zwölf O-Atomen, dieX-Atome von zwölf As-Atomen umgeben. Das Koordinationspolyeder ist in beiden Fällen ein hexagonales Primsa. Die einzelnen Verbindungen wurden unter Hydrothermalbedingungen aus kubischem As2O3 und dem jeweiligen Kalium- oder Ammoniumhalogenid in einer gesättigten wäßrigen Lösung von Kaliumacetat bzw. Ammoniak synthetisiert (500 K, Sättigungsdampfdruck).
  相似文献   

16.
Single crystals of double-perovskite type lanthanide magnesium iridium oxides, Ln2MgIrO6 (Ln=Pr, Nd, Sm-Gd) have been grown in a molten potassium hydroxide flux. The compounds crystallize in a distorted 1:1 rock salt lattice, space group P21/n, consisting of corner shared MO6 (M=Mg2+ and Ir4+) octahedra, where the rare earth cations occupy the eight-fold coordination sites formed by the corner shared octahedra. Pr2MgIrO6, Nd2MgIrO6, Sm2MgIrO6, and Eu2MgIrO6 order antiferromagnetically around 10-15 K.  相似文献   

17.
Fe2O(SO4)2 is a secondary product of the decomposition of FeSO4⋅H2O. Part I of this study presents results on the synthesis of Fe2O(SO4)2 in gaseous environment containing either low or high concentration of oxygen. In this paper the existence of differences between the structures of Fe2O(SO4)2 and Fe2(SO4)3 is proved on the basis of a detailed thermal study of Fe2O(SO4)2 upon dynamic heating (differential thermal analysis) and upon isothermal heating (thermal-analytic balance) in various gaseous environments as well as by presenting kinetic data on the processes of decomposition of both compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Two new rare-earth metal containing Zintl phases, Eu11InSb9 and Yb11InSb9 have been synthesized by reactions of the corresponding elements in molten In metal to serve as a self-flux. Their crystal structures have been determined by single crystal X-ray diffraction—both compounds are isostructural and crystallize in the orthorhombic space group Iba2 (No. 45), Z=4 with unit cell parameters a=12.224(2) Å, b=12.874(2) Å, c=17.315(3) Å for Eu11InSb9, and a=11.7886(11) Å, b=12.4151(12) Å, c=16.6743(15) Å for Yb11InSb9, respectively (Ca11InSb9-type, Pearson's code oI84). Both structures can be rationalized using the classic Zintl rules, and are best described in terms of discrete In-centered tetrahedra of Sb, [InSb4]9−, isolated Sb dimers, [Sb2]4−, and isolated Sb anions, Sb3−. These anionic species are separated by Eu2+ and Yb2+ cations, which occupy the empty space between them and counterbalance the formal charges. Temperature-dependent magnetic susceptibility and resistivity measurements corroborate such analysis and indicate divalent Eu and Yb, as well as poorly metallic behavior for both Eu11InSb9 and Yb11InSb9. The close relationships between these structures and those of the monoclinic α-Ca21Mn4Sb18 and Ca21Mn4Bi18 are also discussed.  相似文献   

19.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

20.
Two non-stoichiometric Gd compounds, GdCu5−xTrx (Tr=Al, Ga) have been synthesized from the corresponding elements by high temperature reactions in sealed tantalum containers. They crystallize in the hexagonal CaCu5-type (Pearson's symbol hP6, space group P6/mmm, No. 191) with lattice parameters determined from single-crystal X-ray diffraction at room temperature as follows: a=5.0831(10) Å; c=4.156(2) Å for GdCu3.98(4)Al1.02(4), and a=5.1025(10) Å; c=4.155(2) Å for GdCu3.9(1)Ga1.1(1), respectively. Structure refinements from single crystal X-ray diffraction data reveal that substitution of Cu for Al or Ga takes place preferably on one of the two transition metal sites with site symmetry mmm (3g). Both compounds order antiferromagnetically below ∼40 K and ∼36 K, respectively, as determined from temperature dependent dc-magnetization, resistivity and heat-capacity measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号