首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio molecular orbital and density functional theory were used to investigate energetic and structural properties of the various conformations of hexa-tertbutylbenzene (1), hexakis(trimethylsilyl)benzene (2), hexakis (trimethylgermyl)benzene (3), and hexakis(trimethylstannyl)benzene (4). HF/3-21G//HF/3-21G and B3LYP/3-21G//HF/3-21G results revealed that the Twist-Boat (TB) conformer of compound 1 is more stable than the 1-Chair (C), 1-Boat (B), and 1-Planar (P) conformers. B3LYP/3-21G//HF/3-21G results show that the 1- TB conformer is more stable than 1- C, 1- B, and 1- P conformers of about 1.13, 4.34, and 99.94 kcal mol?1 , respectively. Contrary to the stability order of compound 1 conformers, the C conformer of compounds 2–4 is more stable than TB, B, and P conformations, as calculated by B3LYP/3-21G//HF/3-21G and HF/3-21G//HF/3-21G levels of theory. The energy gap between the C and P conformers in compounds 1–4 is decreased in the following order: ΔE(4: C, P) < ΔE (3: C, P) < ΔE(2: C, P) < ΔE (1: C, P). This fact can be explained in terms of the increase of C aromatic -M (M═C, Si, Ge, and Sn) bond lengths and the decrease of steric (van der Waals) repulsions in the previously discussed compounds. For compounds 1–3, the calculations were also performed at the B3LYP/ 6-31G*//HF/3-21G level of theory. However, the comparison showed that the results at B3LYP/3-21G//HF/3-21G methods correlated well with those obtained at the B3LYP/6-31G*// HF/6-31G method. Further, NBO analysis revealed that in compounds 1–4, the resonance energy associated with the σM-C1 to σ*C2-C3 delocalization is 5.20, 9.68, 11.15, and 12.27 kcal mol?1, respectively. These resonance energy values could explain the easiness of the ring flipping processes of C, B, and TB conformers of compounds 4 to 1. Also, the NBO results showed that by an increase of the σM-C1 → σ *C2-C3 resonance energies in compounds 1–4, the σM-C1 bonding orbital occupancies decrease. This fact could fairly explain the increase of the Caryl-M bond length from compound 1 to 4. The NBO results are also in good agreement with the calculated energy barriers for the ring flipping of the chair conformations in compounds 1–4, as calculated by B3LYP and HF methods.  相似文献   

2.
A theoretical study of the thermal decomposition kinetics of oxetane (1), 2-methyloxetane (2), and 2,2-dimethyloxetane (3) has been carried out at the B3LYP/6-311+G**, B3PW91/6-311+G**, and MPW1PW91/6-311+G** levels of theory. The MPW1PW91/6-311+G** method was found to give a reasonable good agreement with the experimental kinetics and thermodynamic parameters. The decomposition reaction of compounds 1~3 yields formaldehyde and the corresponding substituted olefin. Based on the optimized ground state geometries using MPW1PW91/6-311+G** method, the natural bond orbital (NBO) analysis of donor-acceptor (bond-antibond) interactions revealed that the stabilization energies associated with the electronic delocalization from σC3-C4 bonding to σ*O1-C2 antibonding orbitals decrease from compounds 1 to 3. The σC3-C4→σO1-C2 resonance energies for compounds 1~3 are 2.63, 2.59 and 2.45 kcal mol-1, respectively. Further, the results showed that the energy gaps between σC3-C4 bonding and σ*O1-C2 antibonding orbitals decrease from compounds 1 to 3. Also, the decomposition process in these compounds are controlled by σ→σ* resonance energies. Moreover, the obtained order of energy barriers could be explained by the number of electron-releasing methyl groups substituted to the Csp3 atom (which is attached to oxygen atom). NBO analysis shows that the occupancies of σCsp3-O bonds decrease for compounds 1~3 as 3<2<1, and those of σCsp3-O bonds increase in the opposite order (3 > 2 > 1). This fact illustrates a comparatively easier thermal decomposition of the sCsp3-O bond in compound 3 compared to compound 2, and in compound 2 compared to compound 1. NBO results indicate that these reactions are occurring through a concerted and asynchronous four-membered cyclic transition state type of mechanism.  相似文献   

3.
Abstract

New phosphoramidates with formula P(O)(X)[NH-N = C(C6H5)2]2, X = Cl (1), C6H5C(O)NH (2), CCl3C(O)NH (3), C6H5C(O)NHP(O)[NHCH(CH3)2]2 (4), and P(O)(Cl)[2-NH-C6H4-C(O)OC2H5]2 (5) were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy, and elemental analysis. The 1H and 13C NMR spectra of 4 display two sets of signals for the two unequivalent CH3 groups of the isopropyl substituents due to the presence of prochiral CH units. Interestingly, the 13C NMR spectrum of 5 indicates long-range 4 J(P,Cmeta) = 0.9 Hz. Such a coupling was not observed in previous studies for similar phosphoramidates. The geometries of phosphoramidates 15 were optimized by Gaussian 98 software at HF and B3LYP levels of theory with standard 6-31G* and 6-31+G** basis sets. The stabilization energies were calculated from the equation ΔE = E(molecule) – Σi E(i), i = atom. For all compounds, the B3LYP/6-31G* basis set provided the highest negative stabilization energies. The nuclear quadrupole coupling constants (χ) for 14N, 2H, and 35Cl nuclei were computed to be 4–6 MHz, 180–190 KHz, and 50, 80 MHz, respectively. The χ values for the 17O atoms of phosphoryl moieties (5.0 MHz) are almost half than those of C?O bonds (10.0 MHz). Moreover, the χ values of amidic N atoms are smaller than those of amino N atoms.

GRAPHICAL ABSTRACT   相似文献   

4.
Abstract

The impacts of the generalized anomeric effect (GAE) and gauche effect (GE) associated with donor–acceptor electron delocalizations and dipole–dipole interactions on the conformational properties of 2-methoxy- (1), 2-methylthio- (2), 2-methylseleno- (3), 2-fluoro- (4), 2-chloro- (5), and 2-bromocyclohexanone oxime (6) have been studied by means of hybrid density functional theory (B3LYP/6–311+G**) and ab initio molecular orbital (HF/6–311+G**)-based methods and natural bond orbital (NBO) interpretation. Both methods used showed that the above compounds exist predominantly in the axial chair conformation and the axial conformation stability increased from 2-methoxy- (1) to 2-methylselenocyclohexanone oxime (3) and also from 2-fluoro- (4) to 2-bromocyclohexanone oxime (6). The NBO analysis showed that the GAE increases from compound 1 to compound 3 and also from compound 4 to compound 6. GE does not have significant impact on the conformational behaviors of compounds 1–6 and GAE succeeds in accounting qualitatively for the increase of the axial preferences in both series of compounds.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental resource: Table S1.

Supporting Information Available. The structures optimized and thermodynamic functions of the axial and equatorial conformations of compounds 1–6. This material is available free of charge via the Internet.  相似文献   

5.
Abstract

Minimum-energy and transition-state geometries of 4-oxobuta-1,3-diene-1-thione, buta-1,3-diene-1,4-dithione, 4-selenoxobuta-1,3-diene-1-thione, 4-selenoxobuta-1,3-diene-1-one, and buta-1,3-diene-1,4-diselenone were calculated using HF, B3LYP, and MP2 levels of theory and 6–31 + G* basis set by rotation around the related ?C?C? single bonds. In all of the above-mentioned molecules, the s-trans conformation was obtained as the most stable conformer with the 180° dihedral angle. In buta-1,3-diene-1,4-dithione, 4-selenoxobuta-1,3-diene-1-thione, and buta-1,3-diene-1,4-diselenone, the s-cis form of these compounds corresponded to the other energy-minimum geometry. Their skew geometries, with torsional angles approximately 100°, were a transition state for conformational interconversion between the two global minima forms. In 4-oxobuta-1,3-diene-1-thione and 4-selenoxobuta-1,3-diene-1-one, geometries with the C?C?C?C dihedral angles about 51 and 43° (respectively) were attributed to the second energy-minimum geometry. Transition-state structures from both molecules were found in the torsional angles at about 0 and 100°.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.

GRAPHICAL ABSTRACT  相似文献   

6.
Ab inintio molecular orbital and density functional theory method were used to investigate the structural and dynamic behavior of 1,8-di-tert-butyl naphthalene (1), 1,8-bis(trimethylsilyl)naphthalene (2), 1,8-bis(trimethylgermyl)naphthalene (3), and 1,8-bis(trimethylstannyl)naphthalene (4). HF/3-21G//HF/3-21G results revealed that the ring flipping barrier height of compound 1–4 is 92.59, 32.13, 26.76, and 15.46 kJ mol?1 respectively. The obtained results show that the transition state structure for ring flipping of the bulky-groups is in a planar form with naphthalene ring. Contrary to compound 1, the ring flipping of compounds 2–4 occurred easily at room temperature. Also, MP2/3-21G//HF/3-21G energy calculation, show that the enantiomerization energy of compounds 1–4 are 97.99, 33.24, 26.80, and 15.38 kJ·mol?1 respectively. The required energy for ring inversion of compounds 1–4 are 85.09, 27.26, 21.54, and 10.21 kJ mol?1 respectively, as calculated by B3LYP/3-21G//HF/3-21G method. It can be concluded that the lower energy barrier of the ring flipping of compounds 2–4 is related to the increasing of the bond lengths of Si—C, Ge—C, and Sn—C, in contrast to C—C bond.  相似文献   

7.
Abstract

The alkyl 1,2-shift in di-tert-butylcyclopenta-1,3-diene (1) and the metallotropic 1,2-shifts in bis(trimethylsilyl)cyclopenta-1,3-diene (2), bis(trimethylgermyl)cyclopenta-1,3-diene (3), and bis(trimethylstannyl)cyclopenta-1,3-diene (4) have been investigated by means of natural bond orbital (NBO), nuclear magnetic resonance (NMR) analysis, and hybrid density functional theory based methods. The B3LYP/DZVP results showed that the M(CH3)3 group [M = C (1), Si (2), Ge (3), and Sn (4)] migration barrier heights around cyclopentadienyl rings decrease from di-tert-butylcyclopenta-1,3-diene to its stannane derivative. Also, based on the results obtained, the stabilities of the 5,5-isomers in comparison to the 1,5- and 2,5-isomers increase from di-tert-butylcyclopenta-1,3-diene to its stannane derivative. The results suggest that in these compounds the metallotropic shifts are controlled by the stabilization energies associated with σ→π* electron delocalizations and the increase of the σC5-M→π*C1-C2 electron delocalizations facilitates the M(CH3)3 group migrations around cyclopentadienyl rings. Based on the aromatic stabilization energy (ASE) values calculated, the aromaticity increases from the 5,5-isomers of di-tert-butylcyclopenta-1,3-diene to its stannane derivative but the variation of the nucleus-independent chemical shift, NICS(0) and NICS(1), values calculated are not in accordance with the ASE values calculated and the σC5-M→π*C1-C2

electron delocalizations. The correlations between the sigmatropic shift barrier heights, σ→π* electron delocalizations, ASE, and NICS values were investigated.

GRAPHICAL ABSTRACT  相似文献   

8.
The complexation of various ammonium ions with a resorcarene host was evaluated by ab initio calculations. The approximations of the binding locations and the interaction energies for each guest are reported. The supramolecular complex formation also affects the conformation of the resorcarene host.  相似文献   

9.
在6-31G水平上对3,4-二硫方酸(3,4-二巯基-3-环丁烯-1,2-二酮)的3种平面构象异构体进行SCF计算.结果表明,ZZ型异构体最稳定,ZE型次之,从等键反应能量分析3,4-二硫方酸的稳定性,与苯作比较探讨其芳香性.并在6-31G水平上计算了3种构象的振动频率.  相似文献   

10.
Abstract

The nature of the transition state structures of the decomposition of 3-pyrroline (1), 2,5-dihydrofuran (2) and 2,5-dihydrothiophene (3) were investigated usingab initio Molecular Orbital (MO) and Density Factional Theory (DFT) methods. The energy barrierof the decomposition of compound 1 is smaller than compound 2 and compound 2 is smaller than compound 3. The energy barriers for the decomposition of compounds 1–3 are 46.20, 50.17, and 61.34 kcal mol?1, respectively, which is calculated by B3LYP/6-31G*//HF/6-31G* level of theory. Which is ingood agreement with reported experimental data. Contrary to the previously reported data, the distance between the cis-2-and-5-hydrogen atoms in compound 1 is greater than compound 2. The transition-state structures of the decomposition of compounds 1–3 are formed by interaction of the cis-2-and-5-hydrogen atoms. Also, the rings of compounds 1–3 in the transition state structures are puckered.  相似文献   

11.
The ab initio calculations were performed by the intrinsic reaction coordinated(IRC) method for the reaction paths of the dehydrogenations of methylenimine. We determined the geometries and energies of the transition states and obtained the activation energies, activation entropies and the statistical A factors on the RHF/4 -31G singlet potential energy surface. The mode selective study reveals the intrinsic reaction coordi-nates(URC) of 1 ,1 and 1 ,2 dehydrogenations of methylenimine to be related with the H2C= group symmetrical stretch mode and the =NH group stretch mode, respectively. The vibration coupling between the normal coordinates occurs in either of these two reaction paths.  相似文献   

12.
对S_N2反应势能面的研究是探讨有机和生物大分子反应机理的中心课题.对气相反应,精确的从头计算可得到与实验值相近的能垒值和实验无法确定的过渡态和反应路径等细  相似文献   

13.
Nl0isalwaysusedasoxidantinalotofoxidativecatalyticprocesses,suchastheoxidativecouplingofmethane(0CM),oxidativedehydr0genationofalkanesands0on,becauseitdecomPosestoprovideOadspeciesonmetal0xidecatalystsandleadstothespecificoxidativeselectivity.Forexample,itwasf0undthatf0rOCMreacti0nonMgOandLougOcatalystS,thereactiontemPeraturerequiredislowerwhenoneusesN20asoxidantthanusing0,'.TheunderstandingofN20dec0mposihon0nmetal0xidecatalystsandthepropertiesofthereIevant0adspeciesshouldbeagoodstarting…  相似文献   

14.
Abstract

Natural bond orbital (NBO) interpretation and hybrid density functional theory (hybrid-DFT: B3LYP/Def2-TZVPP)-based methods were used to investigate the impacts of the generalized anomeric effects (GAE), electrostatic, and steric interactions on the conformational properties of cis and trans isomers of 2-fluoro-, 2-chloro-, and 2-bromotetrahydrothiopyran S-oxide (13). The results obtained showed that the trans-axial configurations are the most stable forms of compounds 13. Based on the results obtained, the instability of the second lowest energy-minimum (cis-equatorial configuration, with axial S?O and equatorial C?X bonds, X = halogen atoms) increases from compound 1 to compound 3. This trend is also observed for the third lowest energy-minimum (i.e., the trans-equatorial configuration). Contrary to the trend observed for the cis- and trans-equatorial forms, the instability of the cis-axial form compared to the trans-axial form, increases from 1 to 2 but decreases slightly from 2 to 3. The correlations between the GAE, bond orders, steric effects, ΔG, Δμ, structural parameters, and conformational and configurational behaviors of compounds 1–3 have been investigated.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

15.
NBO analysis and hybrid density functional theory–based method (B3LYP/6-311+G**) was used to study the anomeric effects (AE), dipole–dipole interactions, and steric repulsion effects on the conformational properties of 2,3,5,6-tetrahalo-1,4-dioxane [halo = F (1), Cl (2), Br (3)], 2,3,5,6-tetrahalo-1,4-dithiane [halo = F (4), Cl (5), Br (6)], and 2,3,5,6-etrahalo-1,4-diselenane [halo = F (7), Cl (8), Br (9)]. B3LYP/6-311+G** results revealed a strong axial preference in compounds 13. Gibbs free energy difference (G eqG ax) values (e.g., ΔG eq-ax) between the axial and equatorial conformations of compound 1 to compound 3 are 8.19, 3.86, and 3.13 kcal mol?1, respectively, as calculated by the B3LYP/6-311+G** level of theory. On the other hand, the NBO analysis of donor–acceptor (bond–antibond) interactions revealed that the AE for compounds 1–3 are ?12.26, ?16.46, and ?18.11 kcal mol?1, respectively. Contrary to the increase of the AE values from compound 1 to compound 3, the increase of the steric repulsions (e.g., 1,3-syn-axial repulsions) could fairly explain the decrease of the axial conformation stability in compounds 13 compared to their equatorial conformations. Further, the correlations between the AE, structural parameters, and conformational behavior of compounds 4–9 have been investigated.  相似文献   

16.
C20三个异构体稳定性的从头计算研究   总被引:3,自引:0,他引:3  
采用HF,B3LYP,MP2和QCISD等理论方法在6-31G和6-31G*基组水平上,对C20的3个主要异构体碟型(Bowl)、笼型(Cage)和环型(Ring)的结构进行理论研究,得出这3个异构体的相对稳定性的次序为:Ring>Bowl>Cage.计算结果显示,分子轨道具有离域特性,电子的这种离域特征有利于原子间更好的成键,可避免出现大的张力,这是Cage型异构体虽然违反“五元环隔离规则”(Isolatedpentagonrule)却能稳定存在的原因.  相似文献   

17.
铍和硼簇合物的实验和理论研究表明,它们有特殊的成键方式,BBe2,B2Be2,B6Be和B4Be等簇合物结构已由晶体粉末法测得^[1]。这类化合物可用于带电粒子的活化分析和低能电子的遏止实验,有一定应用前景^[2],对BnBem簇电子结构和成键性质进行研究,不仅对理解大簇和凝聚相的形成机制及微观结构等有重要意义,而且有一定的应用价值^[3-6],B2Be/B2Be^ 的结构^[7]已有论证。本文选用高精度大基组二次组态相互作用QCISD(T)/6-311G^**方法对BBe3,B2Be2和B3Be的电子结构进行了计算,并在HF/6-31G^*水平上作了频率计算。  相似文献   

18.
应用从头计算分子轨道方法,在HF/MINI/ECP和UHF/MINI/ECP水平上对Mo7S24^n-(n=0、1、2、3、4、6)六个硫化钼微昌体和加氢产物Mo7S24H12的几何构型进行了优化,通过对带电体系的能量分析选出三种有代表性的微晶:Mo7S24^2-、Mo7S24^-和Mo7S24,优化后的Mo7S24结构参数与实验值符合较好。在所研究的硫化钼微晶体中存在着三种不等价硫原子和两种不等价钼原子,计算结果表明,同种不等价原子的成键特征有明显差异,当体系带电及加氢时键级总能量有较大的变化,但形成键的杂化轨道类型却变化很小。  相似文献   

19.
Ab initio molecular orbital calculations have been used to investigate the thermal decomposition kinetics of 2-chloroethylethyldichlorosilane at the B3LYP/6-311+G**,B3PW91/6-311+G**,and MPW1PW91/6-311+G** levels of theory.Among these methods,the results(activation parameters) obtained using the B3LYP/6-311+G** level are in good agreement with the available experimental data.The calculated data imply that in the unimolecular β-elimination reactions of the studied compound in the gas phase,the polarization of C(1)-Cl(3) and C(1)-H(4) bonds in the sense of C(1)δ+-Cl(3)δ-and C(1)δ+-H(4)δ-,respectively,is a determining factor in the gas phase elimination reactions 1,2 and 3.Analysis of bond order,natural bond orbital charges,bond indexes,synchro-nicity parameters,and IRC calculations suggest the elimination of 2-chloroethylethyldichlorosilane via reactions 1~3 can be described as concerted and slightly asynchronous.The transition state structures of these reactions are a four-membered cyclic structure.  相似文献   

20.
The Raman (3500–40 cm–1) and infrared (3500–70 cm–1) spectra of gaseous and solid 2-methoxypropene, CH3O(CH3)C=CH2, and the isotopomers, CD3O(CH3)C=CH2 and CH3O(CD3)C=CD2 have been recorded. In addition, the Raman spectra of the liquids have been recorded with qualitative depolarization measurements. All of these data indicate that only one conformer is present in the fluid phases at ambient temperature and this form is the cis conformer, which remains in the solid. Assignments are provided for the fundamentals of all three isotopomers for the cis conformer with Cs symmetry. The far-infrared spectra of all three isotopic species have been recorded at a resolution of 0.1 cm–1 in the gas and 1.0 cm–1 in the solid. The parameters of the potential function governing the asymmetric torsion are determined to be V3 = 1485 ± 9 cm–1 and V6 = –55 ± 4 cm–1 for the d0 compound, where only two terms were determined, since a second conformer was not evident. The barrier to internal rotation for the methyl group attached to the oxygen atom is 1370 ± 8 cm–1 and the C—CH3 barrier is 772 ± 5 cm–1. Ab initio calculations with full electron correlation have been carried out by the perturbation method to second order to obtain the equilibrium structural parameters, harmonic force constants, fundamental frequencies, infrared intensities, Raman activities, depolarization values, and conformational stability. The predicted values have been compared to the experimental values where appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号