首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis reactions of 8 different N-bearing alkoxy-silane coupling agents, namely: 3-cyanopropyl triethoxy silane (CPES), triethoxy-3-(2-imidazolin-1-yl) propyl silane (IZPES), and amino silanes, 3-aminopropyl triethoxy silane (APES), 3-aminopropyl trimethoxy silane (APMS), 3-(2-aminoethylamino)propyl trimethoxysilane (DAMS), 3-[2-(2-aminoethylamino)ethylamino] propyl trimethoxysilane (TAMS), 4-amino-3,3-dibutyl trimethoxy silane (ADBMS) and trimethoxy [3-(phenylamino)propyl] silane (PAPMS) were carried out in ethanol/water 80/20 (w/w) solutions in acidic media and followed in situ by 1H-, 13C- and 29Si-NMR spectroscopy. Acidic conditions were selected in order to enhance the formation of silanol and to slow down the self condensation reactions of the hydrolyzed functions. 29Si NMR spectroscopy revealed the formation of intermediate species, particularly the solvolysis of γ-amino silanes by reaction exchange with the alcoholic solvent.  相似文献   

2.
The hydrolysis of four alkoxy-silane coupling agents, 3-methacryloxypropyl trimethoxy silane (MPMS), 3-mercaptopropyl trimethoxy silane (MRPMS), octyl triethoxy silane (OES) and 3-aminopropyl triethoxy silane (APES) was carried out in an ethanol/water 80/20 (w/w) solution under acidic, alkaline and neutral conditions and followed by 1H, 13C and 29Si NMR spectroscopy. It was found that the kinetic rate of the hydrolysis of the silanes under neutral conditions was very low, except for APES, which displayed the fastest reaction speed. The addition of TEA catalyzed both silane hydrolysis and self condensation reactions. Acidic conditions enhanced the hydrolysis and the ensuing silanol entities were quite stable. In fact, these conditions slowed down the rate of the self condensation reactions, as deduced from in situ 1H and 13C NMR. Thanks to in situ 29Si NMR spectroscopy, the nature of the intermediary species versus reaction time was established.  相似文献   

3.
The hydrolysis of three alkoxy-silane coupling agents, gamma-methacryloxypropyl trimethoxy silane (MPS), gamma-aminopropyl triethoxy silane (APS), and gamma-diethylenetriaminopropyl trimethoxy silane (TAS), was carried out in ethanol/water solutions (80/20 w/w) at different pH values and followed by 1H, 13C and 29Si NMR spectroscopy. Acidic media were found to stabilize the hydrolyzed forms. As expected, the formation of silanol groups was followed by their self-condensation to generate oligomeric structures, yielding, ultimately, solid homopolycondensated structures, as analyzed by 29Si and 13C high-resolution solid-state NMR. Hydrolyzed MPS in acidic media was then successfully adsorbed onto a cellulose surface and the ensuing substrates submitted to thermal treatment at 110-120 degrees C under reduced pressure, in order to create covalent bonds between cellulose and the coupling agent.  相似文献   

4.
DBTL as neutral polycondensation catalyst was employed to obtain organic modified silanes (ORMOSILs), which were studied as anticorrosive films for aluminum at saline corrosion. The ORMOSILs were synthesized using TEOS as silica precursor, different alkylalkoxysilanes (trimethoxy(methyl)silane, triethoxy(octyl)silane, 3-aminopropyl(triethoxy)silane and DBTL-catalyst were employed under the free solvent sol–gel process. Results of chemical characterization of ORMOSILs coatings show that under SEM technique coatings have homogenous films, and there are a crosslinking between silica and organic modified under the Infrared spectroscopy and 29Si CPMAS-NMR techniques. On the other hand, Brinell hardness and Pull-Off adhesion tests show that all ORMOSILs increase the aluminum surface hardness between 1 and 10%, and the ORMOSILs critical forces for adhesion are in the range of 106–132?N; therefore, the ORMOSILs coatings have an excellent adhesion to aluminum surface, furthermore, the saline corrosion test shows that organic modified silica avoid the pitting aluminum corrosion; corrosion rate decreases about 60–85%; the anticorrosive behavior according to modified-silica was determined as: SiO2–NH2?>?SiO2–Me?~?SiO2–Octyl.  相似文献   

5.
The reaction of triethoxy(3-aminopropyl)silane with carbon disulfide andortho-chloroethyl formate in absolute ethanol gave triethoxy(3-isothiocyanatopropyl)silane for the first time. The presence of SCN and (C2H5O)3Si groups in this compound enabled us to use it for the preparation of adsorbents and polymer coatings with biocidal activity.Irkutsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 11, pp. 2681–2682, November, 1992.  相似文献   

6.
Reactions were investigated between acyl iodides RCOI (R = Me, Ph) and organosilicon amines of two classes: trimethyl(diethylamino)silane, dimethyl-bis(diethylamino)silane, and hexamethyldisilazane on the one hand, and 3-aminopropyl(triorganyl)silanes H2N(CH2)3SiX3 (X = Et, EtO) on the other hand. The reaction of RCOI with trimethyl(diethylamino)silane Me3SiNEt2 occurred with a cleavage of the Si-N bond and the formation of N,N-diethylacet- or -benzamides and trimethyliodosilane separated in a mixture with hexamethyldisiloxane. At the reaction of acyl iodides RCOI (R = Me, Ph) with dimethyl-bis(diethylamino)silane in the ratio 2:1 in benzene solution both Si-N were ruptured leading to the diethylamide of the corresponding acid and dimethyldiiodosilane. The main product of the reaction of acetyl iodide with hexamethyldisilazane at the molar ratio 2:1 was diacetylimide (MeCO)2NH. This reaction can be recommended as a simple and convenient preparation procedure for diacylimides. The exothermal reaction of the acetyl iodide with 3-aminopropyl(triethyl)- and -(triethoxy)silanes at the molar ratio of the reagents 1:1 without solvent resulted in quaternary ammonium salts, hydroiodides of the corresponding acetylamides I?MeCON+H2(CH2)3SiX3 (X = Et, OEt).  相似文献   

7.
The reactions of 2-, 3-, and 4-(1-vinylpyrrol-2-yl)pyridines with methyl iodide afford the corresponding quaternary salts. Analysis of their 1H and 13C NMR spectra showed that the quaternization of the nitrogen atom considerably enhances the -acceptor effect of the pyridine ring on the pyrrole ring and on the vinyl group. 1-Methyl-2-(1-vinylpyrrol-2-yl)pyridinium iodide contains no weak intramolecular C--H...N hydrogen bond present in the starting compound.  相似文献   

8.
9.
A reaction of 3-aminopropyl(triethoxy)silane with acetylacetone gave a mixture of two isomeric carbon-functionalized organosilicon compounds capable of complexation and sol-gel polymerization. These were 4-(3′-triethoxysilylpropylimino)-pent-2-en-2-ol (EtO)3Si-CH2CH2CH2-N=C(Me)CH=C(Me)OH (Ia, 83%) and 4-(3′-triethoxysilylpropylamino)-pent-3-en-2-one (EtO)3Si-CH2CH2CH2-NH-C(Me)=CH-C(O)Me (Ib, 17%). With acetylacetone trimethylsilyl ether instead of acetylacetone itself, compound Ia and silylated derivatives (Me3SiO) n (EtO)3 ? n Si-CH2CH2CH2-N=C(Me)CH=C(Me)OH were obtained as admixture in 84 and 16% yields, respectively. Reactions of ligands Ia and Ib with europium and terbium propan-2-olates afforded the corresponding complexes. Formulations of lanthanide complexes, oligodimethylsiloxanediols, and 3-aminopropyl(triethoxy)silane were used to prepare transparent sol-gel films. The photoluminescence spectra of the films show narrow bands due to Eu3+ or Tb3+ emission. Emission from the organosilicon matrix appears as a broad band at 430 to 435 nm.  相似文献   

10.
Abstract

The influence of different heteroaryl and functionalized aryl substituents on the electron-donating ability and basicity of the phosphorus atoms in heteroaryl phosphines and diphosphines has been determined by the use of the direct 1JPSe coupling constants of the corresponding selenides. The generality of the use of 31P–77Se spin–spin coupling constants as probe for the basicity of phosphines is discussed as well as the scope and limits of this concept.

GRAPHICAL ABSTRACT   相似文献   

11.
Abstract

Four octahedral complexes of the type SnCl4.2L [L = (R2N)3P(E): E = Se; R = Me(1), Et(2) and E = S; R = Me(3), Et(4)] have been studied in solution by multinuclear (31P, 77Se, and 119Sn) NMR spectroscopy. 31P and 77Se NMR data were informative of changes associated with complex formation. The solution structure of the complexes was confirmed by their 119Sn NMR spectra that showed two triplet features for each complex, attributed to a mixture of the expected cis and trans isomers. The triplet signal is due to the coupling with two equivalent phosphorus atoms, consistent with an octahedral geometry around the tin center. In addition, density functional theory (DFT)/B3LYP calculations have been carried out to support the interpretations of NMR data. The results are discussed and compared with those reported for related complexes.

GRAPHICAL ABSTRACT   相似文献   

12.
Homogeneity and structure of organically modified polysiloxane networks prepared by sol-gel co-condensation, as well as location and nature of water molecules and silanol groups were studied by 1D and 2D solid-state NMR. 1H–29Si and 1H–1H interatomic distances were estimated from variable contact-time CP/MAS experiments, 1H NMR chemical shifts and off-resonance WISE NMR. A structure model of these networks is proposed and discussed. The fraction of proton-inaccessible units Q4 in the networks decreases with increasing amounts of dimethylsiloxane (D) and methylsiloxane (T) units. In contrast to systems prepared by co-condensation of tetraethoxysilane (TEOS) with dimethyl(diethoxy)silane (DMDEOS), proton-inaccessible units form essential fraction in networks prepared by co-condensation of TEOS with methyl(triethoxy)silane (MTEOS). The proton-accessible part of the networks with high O/Si ratios is nano-heterogeneous phase, which is composed of water containing Q i particles separated by copolymer domains. The overall homogeneity and uniformity of binding sites around silanol groups increases by co-condensation TEOS with DMDEOS or MTEOS, while the amount of physisorbed water as well as the hydrogen bond strength decreases, as compared with neat silica gel prepared by polycondensation of TEOS.  相似文献   

13.
Research on Chemical Intermediates - Novel tri-amine functionalized graphene oxide (TGO) material was synthesized using organo silane {3-[2-(2-amino ethyl amino) ethyl amino] propyl trimethoxy...  相似文献   

14.
15.
Water-soluble PVP-stabilized hexagonal-phase La0.78Yb0.20Er0.02F3 nanocrystals (NCs) were synthesized by hydrothermal method. The NCs were coated with a very thin silica shell, and amino groups were introduced to the surface of silica shells by copolymerization of 3-aminopropyl(triethoxy)silane. The core/shell NCs can be dispersed in ethanol and water to form stable colloidal solution. The transmission electron microscopy (TEM), selected area electron diffraction (SAED), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the core/shell materials. In addition, the green up-conversion fluorescence mechanism of La0.78Yb0.20Er0.02F3/SiO2 NCs was studied with a 980-nm diode laser as excitation source. The water solubility, small core/shell particles size, and well colloidal stability mean the green up-conversion fluorescence NCs have potential applications in bioassay.  相似文献   

16.
17.
Abstract

A series of novel 1,2,3-benzotriazin-4-one derivatives containing 4,5-dihydrothiazole-2-thiol were synthesized and characterized by 1H NMR, 13C NMR, 19F NMR and HRMS. The bioassay results showed that compounds 3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)-7-methoxybenzo[d][1–3]triazin-4(3H)-one, 3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)-6-nitrobenzo[d][1–3]triazin-4(3H)-one, 7-chloro-3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)benzo[d][1–3]triazin-4(3H)-one exhibited good control efficacy against the cucumber root-knot nematode disease caused by Meloidogyne incognita at the concentration of 10.0?mg L?1 in vivo. Compound 7-chloro-3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)benzo[d][1–3]triazin-4(3H)-one showed excellent nematicidal activity with inhibition 68.3% at a concentration of 1.0?mg L?1. It suggested that the structure of 1,2,3-benzotriazin-4-one containing 4,5-dihydro-thiazole-2-thiol could be optimized further.  相似文献   

18.
A diblock copolymer, poly(methyl methacrylate)-b-polystyrene (PMMA-b-PS), was grafted onto the surface of nano-titania (nano-TiO2) successfully via reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of TiO2 nanoparticles was modified initially by attaching dithioester groups to the surface using silane coupling agent 3-(chloropropyl)triethoxy silane and sodium ethyl xanthate. The polymerization of methyl methacrylate and styrene were then initiated and propagated on the TiO2 surface by RAFT polymerization. The resulting composite nanoparticles were characterized by means of XPS, FT-IR, 1H NMR and TGA. The results confirmed the successful grafting of poly(methyl methacrylate) (PMMA) and diblock copolymer chains onto the surface of TiO2. The amount of PMMA grafted onto the TiO2 surface increased with the polymerization time. Moreover, the kinetic studies revealed that the ln([M]0/[M]), where [M]0 is the initial and [M] is the time dependent monomer concentrations, increased linearly with the polymerization time, indicating the living characteristics of the RAFT polymerization.  相似文献   

19.
Treatment of tetraethyl orthosilicate with 1,2-diisopropyl-4,4,5,5-tetra-methyl biguanide (A) as a highly strong base immediately gave silica gel by means of hydrolysis and condensation reaction at room temperature. The resulting wet gel was transparent and showed high density after dryness. From the results of gas adsorption and BET analysis, silica gel obtained by the treatment of strong base A had larger specific surface area and pore volume than silica gel that was prepared by a regular or less strong base such as tetramethylammonium hydroxide (TMAH). FTIR analysis revealed that the peak strength of Si-OH bond at 960?cm?1 of silica gel prepared by highly strong base A was smaller than that of TMAH. To understand the mechanism behind such difference, a mixture of diphenylsilandiol and dimethoxydiphenylsilane were reacted with highly strong base A, and the resulting products comprised linear-chain siloxane oligomer and octaphenylcyclotetrasiloxane. Our results indicate that silanol generated by hydrolysis of TEOS is activated by A and the activated silanol undergoes subsequent direct reaction with unhydrolyzed alkoxy silane to give condensation products in ethanol. Such a direct polycondensation between silanol and alkoxy silane brought by highly strong base A led to three-dimensional crosslinking having a higher bulk density of silica gel.  相似文献   

20.
The reaction of trimethoxy(vinyl)silane with diazoles in the presence of metal lithium was studied. The structure of the reaction products was assigned by NMR spectroscopy (1H, 13C, 29Si, COSY, NOESY, HMBC, and HSQC). An explanation for the different reactivities of reagents (aliphatic amines, diazoles, allylalkylsilanes, vinylalkylsilanes, and vinylalkoxysilanes) was provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号