首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Reactions of Nitriles with tBuAsLi2 tBuAsLi2 reacts with the α‐acidic nitrile malonicaciddinitrile in THF/TMEDA under deprotonation and formation of the coordination polymer [{Li(TMEDA}{HC(CN)2}]n ( 1 ). The more base‐stable PhCN gives with tBuAsLi2 under aromatization the salt [Li(Diglyme)2][Li(TMEDA){As[NC(Ph)NC(Ph)]}2] ( 2 ), containing a diazaarsolide. 1 and 2 were characterized by NMR and vibrational spectroscopy, mass spectrometry and X‐ray analyses. According to that, 1 contains in the solid state infinite helical chains of cations and anions, running along [010]. 2 consists of distorted octahedrally coordinated Li+ ion, [Li(diglyme)2]+, and the complex anion [Li(TMEDA){As[NC(Ph)NC(Ph)]}2] with a distorted tetrahedrally environment of the Li+ ion.  相似文献   

2.
Sesquialkoxides of Gallium and Indium Treatment of GaMe3 with one equivalent of HOcHex in toluene at 20 °C leads to [Me2GaOcHex]2 ( 4 ) under evolution of methane. The reaction of InMe3 with two equivalents of HOcHex leads under similar conditions not to [MeIn(OcHex)2]n but to the sesquialkoxide [In{Me2In(OcHex)2}3] ( 5 ). 5 can be described also as [{Me2InOcHex)}2{MeIn(OcHex)2}2]. The use of an excess of cyclohexanol in boiling toluene gives the same result. Under these reflux conditions, the reaction of GaMe3 with an excess of PhCH2OH leads exclusively to another type of sequialkoxides, [Ga{MeGa(OCH2Ph)3}3] ( 6 ). 4 — 6 were characterized by NMR, vibrational and MS spectra, as well as by X‐ray structure determinations. According to this, 4 forms centrosymmetrical and therefore planar Ga2O2 four‐membered rings. 5 and 6 possess basically the same structural motif, central M3+ ion ( 5 : In3+; 6 : Ga3+) coordinated by three metalate units ( 5 : [Me2In(OcHex)2]; 6 : [MeGa(OCH2Ph)3]). The central M3+ ions have always coordination number (CN) six while the three surrounding metal ions possess CN 4. Because of the spectroscopic findings 6 must exist in two isomers (1:1). The C3‐symmetrical isomer C3‐ 6 was characterized by X‐ray analysis, while the isomer C1‐ 6 could by described mainly by the complex NMR data.  相似文献   

3.
Lithium and Cesium Alkoxometalates The aluminium alkoxide, Al(OCH2Ph)3 ( 1 ), can be obtained from a direct synthesis of Al and PhCH2OH under HgCl2 catalysis. The formation of the metalate [{(Diglyme)Li}{Al(OtBu)4}] ( 2 ) from LiAlH4 and tBuOH in THF under evolution of hydrogen takes place, if the reaction product is heated under reflux with additional tBuOH in diglyme. The nucleophilic attack of F ions leads during the treatment of CsF on a THF solution of Al(OcHex)3 after ligand redistribution to the coordination polymer [{Cs(THF)2}{Cs(THF)}{Al(OcHex)4}2]n ([3]n). 1 , 2 , and 3 were characterized by NMR, IR and MS techniques as well as by crystal structure analyses. According to them 1 is present as tetramer in solution and the solid state. The central structural motif of the metalate 2 is a heteronuclear and planar LiO2Al four‐membered ring with a penta‐coordinated Li+ ion. In the chainlike coordination polymer [ 3 ]n Cs+ ions with coordination number five and six occupy alternating positions.  相似文献   

4.
Metalat Ions [Al(OR)4] as Chelating Ligands for Transition Metal Cations Waterfree CoCl2 can be reacted with [{Li(Diglyme)}{Al(OtBu)4}] in THF to the complex [Li(THF)4][{CoCl2}{Al(OtBu)4}]. Addition of diglyme to the reaction mixtures gives the blue compound [Li(diglyme)2][{CoCl2}{Al(OtBu)4}] ( 1 ). According to this procedure the FeII complex [Li(Diglyme)2][{FeCl2}2{Al(OtBu)4}] ( 2 ) was formed by treatment of FeCl2 with Li[Al(OtBu)4]. [{Li(diglyme)}{Al(OtBu)4}] in THF/diglyme can be used as alkoxide transfer reagent on TiCl4 to give the neutral complex [TiCl2(OtBu)2(diglyme)] ( 3 ). The sky‐blue salt [Li(THF)4]2[{CoCl2}3{Al(OCH2Ph)4}2] ( 4 ) was obtained by reaction of Li[Al(OCH2Ph)4] with CoCl2 in THF. By treatment of 4 with diglyme ligand redistribution was observed giving the sky‐blue compound [Li(Diglyme)2]2[{CoCl2}3{Al(OCH2Ph)4}2] ( 5 ) and the violet salt [Li(Diglyme)2]2[Co2Cl5(OCH2Ph)] ( 6 ). A similar salt can be synthesized also directly from Li[Al(OtBu)4] and CoCl2 in diglyme to give [Li(Diglyme)2]2[Co2Cl5(OtBu)] ( 7 ). 1 — 7 were characterized by IR spectroscopy, partly by mass spectrometry and X‐ray analyses. UV‐VIS spectra were recorded from 1 and 5 . According to the X‐ray analyses the MII ions as well as the AlIII ions are coordinated distorted tedrahedrally. In 1 , 2 , 4 und 5 the unit [Al(OR)4] acts a chelating ligand as desired.  相似文献   

5.
Abstract

P.P-Dialkylthiophosphinsäureamide R2P(S)NHR' (R=Me, 'Pr, 'Bu; R'=Me, Et, iPr. cHex. tBu. Ph. etc.) wurden erhalten durch Umsetzung von R2PNHR' mit Schwefel oder durch Reaktion von Me2P(S)CI mit primaren Aminen. Ihre 31P- und 13C-NMR-Spektren werden diskutiert. Insbesondere die Di-t-butylthiophosphinsäureamide sind auszilg;ergewöhnlich stabil gegen Hydrolyse und Luftsauerstoff. P,P-Dialkylthiophosphinic acid amides R2P(S)NHR' (R=Me. iPr. tBu; R'=Me, Et, iPr, cHex. tBu, Ph. etc.) have been obtained by reaction of the corresponding aminophosphines with sulfur or by reaction of dimethylthiophosphorylhalides with primary amines. Their 31P- and 13C-NMR spectra are discussed. The di-t-butylthiophosphinic compounds proved to be remarkably stable against moisture and oxygen.  相似文献   

6.
Amido Derivatives of Aluminium and Gallium The treatment of GaCl3 with LiNcHex2 (cHex = C6H11) in the molar ratio 1 : 3 or 1 : 4 in THF at 20 °C gives the gallium amide Ga(NcHex2)3 ( 1 ) which is monomer in solution and the solid state. Under similar conditions the reaction of AlCl3 and GaCl3 with LiN(CH2Ph)2 in the molar ration of 1 : 4 leads to the amido metalates [Li(THF)4][M{N(CH2Ph)2}4] (M = Al ( 2 ), Ga ( 3 )). 1 – 3 have been characterized by NMR, IR and MS techniques as well as by X‐Ray analyses. According to them 2 and 3 consist of separate ions [Li(THF)4]+ and [M{N(CH2Ph)3}4]. The reason for the monomeric character of 1 is the sterical demand of the NcHex2 group.  相似文献   

7.
The lithium salts of the chalcogenocarbonyl dianions [(E)C(PPh2S)2]2? (E=S ( 4 b ), Se ( 4 c )) were produced through the reactions between Li2[C(PPh2S)2] and elemental chalcogens in the presence of tetramethylethylenediamine (TMEDA). The solid‐state structure of {[Li(TMEDA)]2[(Se)C(PPh2S)2]}—[{Li(TMEDA)}2 4 c ]—was shown to be bicyclic with the Li+ cations bis‐S,Se‐chelated by the dianionic ligand. One‐electron oxidation of the dianions 4 b and 4 c with iodine afforded the diamagnetic complexes {[Li(TMEDA)]2[(SPh2P)2CEEC(PPh2S)2]} ([Li(TMEDA)]2 7 b (E=S), [Li(TMEDA)]2 7 c (E=Se)), which are formally dimers of the radical anions [(E)C(PPh2S)2]? . (E=S ( 5 b ), Se ( 5 c )) with elongated central E? E bonds. Two‐electron oxidation of the selenium‐containing dianion 4 c with I2 yielded the LiI adduct of a neutral selone {[Li(TMEDA)][I(Se)C(PPh2S)2]}—[{LiI(TMEDA)} 6 c ]—whereas the analogous reaction with 4 b resulted in the formation of 7 b followed by protonation to give {[Li(TMEDA)][(SPh2P)2CSS(H)C(PPh2S)2]}—[Li(TMEDA)] 8 b . Attempts to identify the transient radicals 5 b and 5 c by EPR spectroscopy in conjunction with DFT calculations of the electronic structures of these paramagnetic species and their dimers are also described. The crystal structures of [{Li(TMEDA)}2 4 c ], [{LiI(TMEDA)} 6 c ] ? C7H8, [Li(TMEDA)]2 7 b? (CH2Cl2)0.33, [Li(THF)2]2 7 b , [Li(TMEDA)]2 7 c , [Li(TMEDA)] 8 b? (CH2Cl2)2 and [Li([12]crown‐4)2] 8 b were determined and salient structural features are discussed.  相似文献   

8.
Enantiomerically pure triflones R1CH(R2)SO2CF3 have been synthesized starting from the corresponding chiral alcohols via thiols and trifluoromethylsulfanes. Key steps of the syntheses of the sulfanes are the photochemical trifluoromethylation of the thiols with CF3Hal (Hal=halide) or substitution of alkoxyphosphinediamines with CF3SSCF3. The deprotonation of RCH(Me)SO2CF3 (R=CH2Ph, iHex) with nBuLi with the formation of salts [RC(Me)? SO2CF3]Li and their electrophilic capture both occurred with high enantioselectivities. Displacement of the SO2CF3 group of (S)‐MeOCH2C(Me)(CH2Ph)SO2CF3 (95 % ee) by an ethyl group through the reaction with AlEt3 gave alkane MeOCH2C(Me)(CH2Ph)Et of 96 % ee. Racemization of salts [R1C(R2)SO2CF3]Li follows first‐order kinetics and is mainly an enthalpic process with small negative activation entropy as revealed by polarimetry and dynamic NMR (DNMR) spectroscopy. This is in accordance with a Cα? S bond rotation as the rate‐determining step. Lithium α‐(S)‐trifluoromethyl‐ and α‐(S)‐nonafluorobutylsulfonyl carbanion salts have a much higher racemization barrier than the corresponding α‐(S)‐tert‐butylsulfonyl carbanion salts. Whereas [PhCH2C(Me)SO2tBu]Li/DMPU (DMPU = dimethylpropylurea) has a half‐life of racemization at ?105 °C of 2.4 h, that of [PhCH2C(Me)SO2CF3]Li at ?78 °C is 30 d. DNMR spectroscopy of amides (PhCH2)2NSO2CF3 and (PhCH2)N(Ph)SO2CF3 gave N? S rotational barriers that seem to be distinctly higher than those of nonfluorinated sulfonamides. NMR spectroscopy of [PhCH2C(Ph)SO2R]M (M=Li, K, NBu4; R=CF3, tBu) shows for both salts a confinement of the negative charge mainly to the Cα atom and a significant benzylic stabilization that is weaker in the trifluoromethylsulfonyl carbanion. According to crystal structure analyses, the carbanions of salts {[PhCH2C(Ph)SO2CF3]Li? L }2 ( L =2 THF, tetramethylethylenediamine (TMEDA)) and [PhCH2C(Ph)SO2CF3]NBu4 have the typical chiral Cα? S conformation of α‐sulfonyl carbanions, planar Cα atoms, and short Cα? S bonds. Ab initio calculations of [MeC(Ph)SO2tBu]? and [MeC(Ph)SO2CF3]? showed for the fluorinated carbanion stronger nC→σ* and nO→σ* interactions and a weaker benzylic stabilization. According to natural bond orbital (NBO) calculations of [R1C(R2)SO2R]? (R=tBu, CF3) the nC→σ*S? R interaction is much stronger for R=CF3. Ab initio calculations gave for [MeC(Ph)SO2tBu]Li ? 2 Me2O an O,Li,Cα contact ion pair (CIP) and for [MeC(Ph)SO2CF3]Li ? 2 Me2O an O,Li,O CIP. According to cryoscopy, [PhCH2C(Ph)SO2CF3]Li, [iHexC(Me)SO2CF3]Li, and [PhCH2C(Ph)SO2CF3]NBu4 predominantly form monomers in tetrahydrofuran (THF) at ?108 °C. The NMR spectroscopic data of salts [R1(R2)SO2R3]Li (R3=tBu, CF3) indicate that the dominating monomeric CIPs are devoid of Cα? Li bonds.  相似文献   

9.
A series of solvent-free heteroleptic terminal rare-earth-metal alkyl complexes stabilized by a superbulky tris(pyrazolyl)borato ligand with the general formula [TptBu,MeLnMeR] have been synthesized and fully characterized. Treatment of the heterobimetallic mixed methyl/tetramethylaluminate compounds [TptBu,MeLnMe(AlMe4)] (Ln=Y, Lu) with two equivalents of the mild halogenido transfer reagents SiMe3X (X=Cl, I) gave [TptBu,MeLnX2] in high yields. The addition of only one equivalent of SiMe3Cl to [TptBu,MeLuMe(AlMe4)] selectively afforded the desired mixed methyl/chloride complex [TptBu,MeLuMeCl]. Further reactivity studies of [TptBu,MeLuMeCl] with LiR or KR (R=CH2Ph, CH2SiMe3) through salt metathesis led to the monomeric mixed-alkyl derivatives [TptBu,MeLuMe(CH2SiMe3)] and [TptBu,MeLuMe(CH2Ph)], respectively, in good yields. The SiMe4 elimination protocols were also applicable when using SiMe3X featuring more weakly coordinating moieties (here X=OTf, NTf2). X-ray structure analyses of this diverse set of new [TptBu,MeLnMeR/X] compounds were performed to reveal any electronic and steric effects of the varying monoanionic ligands R and X, including exact cone-angle calculations of the tridentate tris(pyrazolyl)borato ligand. Deeper insights into the reactivity of these potential precursors for terminal alkylidene rare-earth-metal complexes were gained through NMR spectroscopic studies.  相似文献   

10.
[(TMEDA)Co(NO)2][BPh4] reacts with Group 1 salts of various monoanionic ligands to yield four and five coordinate {Co(NO)2}10 complexes. The synthesis of the four coordinate complex of the form [{LX}Co(NO)2] via salt-metathesis reactions of [(TMEDA)Co(NO)2][BPh4] with [{ArNC(Me)CHC(Me)NAr}Li(OEt2)] (Ar = 2,6-di-iso-propylphenyl) is reported. In addition [(TMEDA)Co(NO)2][BPh4] reacts with either KTp or a suite of cyclopentadienyllithium and cyclopentadienylsodium reagents, to generate the corresponding five coordinate [{L2X}Co(NO)2] complexes ({L2X = C5H5, MeC5H4, Cp, tBuC5H4, Ph2CHC5H4, Me3SiC5H4, tBuMe2SiC5H4, iPr3SiC5H4, 1,3-(iPr3Si)2C5H3 and Tp). In support of existing precedent, the four coordinate complex is a thermally robust and readily isolable species while five coordinate complexes are thermally unstable transient intermediates that may either undergo dissociation of an NO ligand or be trapped by alkenes to form the corresponding metal dinitrosoalkane complexes. These reactions demonstrate that [(TMEDA)Co(NO)2][BPh4] provides a versatile synthetic entry point to cobalt dinitrosyl complexes and obviates the need for the repeated use of nitric oxide in the preparation of dinitrosoalkane complexes of cobalt.  相似文献   

11.
X‐ray crystal structure analysis of the lithiated allylic α‐sulfonyl carbanions [CH2?CHC(Me)SO2Ph]Li ? diglyme, [cC6H8SO2tBu]Li ? PMDETA and [cC7H10SO2tBu]Li ? PMDETA showed dimeric and monomeric CIPs, having nearly planar anionic C atoms, only O?Li bonds, almost planar allylic units with strong C?C bond length alternation and the s‐trans conformation around C1?C2. They adopt a C1?S conformation, which is similar to the one generally found for alkyl and aryl substituted α‐sulfonyl carbanions. Cryoscopy of [EtCH?CHC(Et)SO2tBu]Li in THF at 164 K revealed an equilibrium between monomers and dimers in a ratio of 83:17, which is similar to the one found by low temperature NMR spectroscopy. According to NMR spectroscopy the lone‐pair orbital at C1 strongly interacts with the C?C double bond. Low temperature 6Li,1H NOE experiments of [EtCH?CHC(Et)SO2tBu]Li in THF point to an equilibrium between monomeric CIPs having only O?Li bonds and CIPs having both O?Li and C1?Li bonds. Ab initio calculation of [MeCH?CHC(Me)SO2Me]Li ? (Me2O)2 gave three isomeric CIPs having the s‐trans conformation and three isomeric CIPs having the s‐cis conformation around the C1?C2 bond. All s‐trans isomers are more stable than the s‐cis isomers. At all levels of theory the s‐trans isomer having O?Li and C1?Li bonds is the most stable one followed by the isomer which has two O?Li bonds. The allylic unit of the C,O,Li isomer shows strong bond length alternation and the C1 atom is in contrast to the O,Li isomer significantly pyramidalized. According to NBO analysis of the s‐trans and s‐cis isomers, the interaction of the lone pair at C1 with the π* orbital of the CC double bond is energetically much more favorable than that with the “empty” orbitals at the Li atom. The C1?S and C1?C2 conformations are determined by the stereoelectronic effects nC–σSR* interaction and allylic conjugation. 1H DNMR spectroscopy of racemic [EtCH?CHC(Et)SO2tBu]Li, [iPrCH?CHC(iPr)SO2tBu]Li and [EtCH?C(Me)C(Et)SO2tBu]Li in [D8]THF gave estimated barriers of enantiomerization of ΔG=13.2 kcal mol?1 (270 K), 14.2 kcal mol?1 (291 K) and 14.2 kcal mol?1 (295 K), respectively. Deprotonation of sulfone (R)‐EtCH?CHCH(Et)SO2tBu (94 % ee) with nBuLi in THF at ?105 °C occurred with a calculated enantioselectivity of 93 % ee and gave carbanion (M)‐[EtCH?CHC(Et)SO2tBu]Li, the deuteration and alkylation of which with CF3CO2D and MeOCH2I, respectively, proceeded with high enantioselectivities. Time‐dependent deuteration of the enantioenriched carbanion (M)‐[EtCH?CHC(Et)SO2tBu]Li in THF gave a racemization barrier of ΔG=12.5 kcal mol?1 (168 K), which translates to a calculated half‐time of racemization of t1/2=12 min at ?105 °C.  相似文献   

12.
(N,N,N′,N′ -tetramethylethylendiamine) di(tert-butyl)aluminium Cations — Molecular Structure of [(Me3C)2Al(TMEDA)][(Me3C)2AlBr2]? Dimeric di(tert-butyl)aluminium halides (Me3C)2AlX (X = Cl, Br) react with N,N,N′,N′ -tetramethylethylendiamine (TMEDA) to give three compounds: the salt-like [(Me3C)2Al(TMEDA)][(Me3C)2AlX2]? 1 , characterized by crystal structure determination, and [(Me3C)2Al(TMEDA)]X? 3 both with chelating amine, and the more covalent, pentane soluble (Me3C)2AlX(TMEDA) 2 with TMEDA bound by only one nitrogen atom. The reaction resembles the symmetrical and unsymmetrical cleavage of diborane(6). 3 (X = Cl) is also formed by treatment of 1 with boiling n-hexane in the presence of TMEDA over a period of 24 hours, while for X = Br the more covalent 2 is the main product under similar conditions. In solution 2 decomposes slowly yielding different products in dependency of the solvent: in benzene 3 and in n-pentane 1 are formed.  相似文献   

13.
The reaction of anhydrous YbCl3 with 1 equiv. of Li2Me2Si(NPh)2 in THF, after workup, yielded a ytterbium(III) chloride [{Me2Si(NPh)2Yb}(μ2‐Cl)(TMEDA)]2·3PhMe ( 1 ) (TMEDA=tetramethylethanediamine). The same reaction followed by treatment with Na‐K alloy afforded a new ytterbium(II) complex supported by a bridged diamide with four coordinated LiCl molecules, [{Me2Si(NPh)2Yb(THF)2}(μ3‐Cl)(μ4‐Cl){Li(THF)}2]2·2THF ( 2 ) in high yield. Both complexes were structurally characterized by X‐ray analysis to be dimers. Complex 1 was a chlorine‐bridged dimer with ytterbium in a distorted octahedral geometry. In complex 2 two [Me2Si(NPh)2Yb(THF)2]‐(μ3‐Cl)[Li(THF)]2 moieties were connected with each other by two μ4‐Cl bridges to form a "chair‐form" framework.  相似文献   

14.
α‐Diimine ligands react with the platinum(II) alkyl complexes [(Me2S)PtMe2]2 and (Me2S)2PtClMe to form (RDABR′)PtMe2 and (RDABR′)PtClMe (RDABR′=RN=CR′−CR′=NR; R=2,6‐Me2Ph, 2,6‐(CHMe2)2Ph, 3,5‐Me2Ph, 3,5‐(CF3)2Ph, C6H11; R′=Me, H). The oxidation of these complexes with Cl2, I2, N‐chlorosuccinimide, [PtCl6]2− and (TMEDA)PtMe2I2 has been investigated. Attempts to determine the oxidation potentials of the PtII complexes electrochemically yielded only irreversible one‐electron oxidations. However, a qualitative ordering of increasing difficulty of oxidation has been determined for the series (RDABR′)PtMe2<(RDABR′)PtClMe<(RDABR′)PtCl2≪(RDABR′)PtMe(solvent)]+. The oxidation proceeds via a two‐electron inner‐sphere electron transfer from a bridged binuclear intermediate. The oxidation of (RDABR′)PtMe2 by (TMEDA)PtMe2I2 exhibits characteristic third‐order kinetics, first‐order each in [PtII], [PtIV] and [I]. Oxidation by a one‐electron process in MeCN solution results in a rapid subsequent disproportionation to PtIIMe and PtIVMe3 cations with MeCN occupying the fourth or sixth coordination sites. Single‐crystal X‐ray structure determinations for [(2,6‐Me2PhDABMe)PtMe3(MeCN)]+[PtCl6]0.5(MeCN) and [(CyDABH)PtMe3(MeCN)]+[PtCl6]0.5(MeCN) are reported.  相似文献   

15.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2tBu2P–P}Pt(PR3)2] and [{η2tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2tBu2P–P}Pt(PMe3)2], [{η2tBu2P–P}Pt(PEt3)2], [{η2tBu2P–P}Pt(PPhEt2)2], [{η2tBu2P–P}Pt(PPh2Et)2], [{η2tBu2P–P}Pt(PPh2Me)2], [{η2tBu2P–P}Pt(PPh2iPr], [{η2tBu2P–P}Pt(PPh2tBu)2] and [{η2tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands.  相似文献   

16.
Reaction of the secocubane [Sn32‐NHtBu)22‐NtBu)(μ3‐NtBu)] ( 1 ) with dibutylmagnesium produces the heterobimetallic cubane [Sn3Mg(μ3‐NtBu)4] ( 4 ) which forms the monochalcogenide complexes of general formula [ESn3Mg(μ3‐NtBu)4] ( 5 a , E=Se; 5 b , E=Te) upon reaction with elemental chalcogens in THF. By contrast, the reaction of the anionic lithiated cubane [Sn3Li(μ3‐NtBu)4]? with the appropriate quantity of selenium or tellurium leads to the sequential chalcogenation of each of the three SnII centres. Pure samples of the mono‐ or dichalcogenides are, however, best obtained by stoichiometric redistribution reactions of [Sn3Li(μ3‐NtBu)4]? and the trichalcogenides [E3Sn3Li(μ3‐NtBu)4]? (E=Se, Te). These reactions are conveniently monitored by using 119Sn NMR spectroscopy. The anion [Sn3Li(μ3‐NtBu)4]? also acts as an effective chalcogen‐transfer reagent in reactions of selenium with the neutral cubane [{Snμ3‐N(dipp)}4] ( 8 ) (dipp=2,6‐diisopropylphenyl) to give the dimer [(thf)Sn{μ‐N(dipp)}2Sn(μ‐Se)2Sn{μ‐N(dipp)}2Sn(thf)] ( 9 ), a transformation that results in cleavage of the Sn4N4 cubane into four‐membered Sn2N2 rings. The X‐ray structures of 4 , 5 a , 5 b , [Sn3Li(thf)(μ3‐NtBu)43‐Se)(μ2‐Li)(thf)]2 ( 6 a ), [TeSn3Li(μ3‐NtBu)4][Li(thf)4] ( 6 b ), [Te2Sn3Li(μ3‐NtBu)4][Li([12]crown‐4)2] ( 7 b′′ ) and 9 are presented. The fluxional behaviour of cubic imidotin chalcogenides and the correlation between NMR coupling constants and tin–chalcogen bond lengths are also discussed.  相似文献   

17.
The use of methanol as solvent is essential for the formation of the double-bookshelf-type oxide cluster [(Cp*Rh)2Mo6O20(OMe)2]2− from [{Cp*Rh(μ-Cl)Cl}2] and four equivalents of [Mo2O7]2−. The reaction proceeds via [Cp*RhMo3O8(OMe)5]. The proposed structure for this key intermediate (shown schematically) is supported by electrospray ionization mass spectrometry and labeling experiments with CD3OD as solvent. Cp*=η5-C5Me5.  相似文献   

18.
Syntheses and Reactions of Aluminium Alkoxide Compounds Al(OcHex)3 ( 1 ) can be synthesized by the reaction of Al with cyclohexanol under evolving of H2 in boiling xylene. [Li{Al(OCH2Ph)4}] ( 2 ) was obtained by treatment of PhCH2OH with a 1 M solution of LiAlH4 in THF. [{(THF)Li}2{Al(OtBu)4}Cl] ( 3 ) is the result of the reaction of four equivalents of LiOtBu on AlCl3 in THF. 3 is the educt for the reactions with the Lewis‐acids InCl3 and FeCl3 in THF leading to the metalates [{(THF)2Li}2{Al(OtBu)4}] · [MCl4] [M = In ( 4 ), Fe ( 5 )]. The attempt to react InCl3 with four equivalents of LiOtBu leads to only one isolated and characterized product, the complex [Li4(OtBu)3(THF)3Cl]2 · THF ( 6 · THF), which can also be synthesized by the treatment of LiCl with three equivalents of LiOtBu in THF. 1–6 · THF were characterized by NMR, IR and MS techniques as well as by X‐ray structure determinations. According to them, 1 , which is tetrameric in solution, is the first structurally characterized example of the proposed trimer form of aluminium alkoxides [ROAl{Al(OR)4}2] with a central trigonal bipyramidal coordinated Al atom. 2 forms a coordination polymer with a distorted tetrahedral coordination sphere of Li and Al, running along [100]. The trinuclear structure skeleton [{(THF)2Li}2{Al(OtBu)4}]+ is still present in the isotypical metalates 4 and 5 . The counter ions [MCl4] possess nearly Td symmetry. The remarkable structural motif of 6 · THF are two heterocubanes [Li4(OtBu)3(THF)3Cl] dimerized by Li–Cl bonds.  相似文献   

19.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

20.
The 3-(N,N-Dimethylamino)prop-1-enyl Group as a Chelate Ligand in Indium Organyls InBr3 reacts with Me2NCH2CH?CHMgCl (molar ratio 1 : 2) to form (Me2NCH2CH?CH)2InBr ( 1 ) as the first indium alkenyl compound with amino-functionalized alkenyl groups. The X-ray structure determination shows the formation of a chelate complex. 1 crystallizes in the orthorhombic space group Fddd with the unit cell parameters a = 14.904(2) Å, b = 17.140(1) Å and c = 21.035(2) Å. By reaction of Me2InBr with Me2NCH2CH?CHMgCl (molar ratio 1 : 1) (Me2NCH2CH?CH)InMe2 ( 2 ) is formed as a colorless, at room temperature liquid, monomeric compound. The n.m.r. and mass spectra are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号