首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An epoxy network structure made of diglycidylether of bisphenol-A and diamino diphenylsulfone was modified by adding various amounts of an epoxy functionalized polyhedral oligomeric silsesquioxane. The obtained nanocomposites were characterized in terms of optical and dielectric properties. The UV-absorption spectra were collected in the wavelength range of 400–800 nm. The optical data were analyzed in terms of absorption formula for non-crystalline materials. The optical energy gap and other basic constants, such as energy tails, dielectric constants, refractive index and optical conductivity, were determined and showed a clear dependence on the POSS concentration. It was found that the optical energy gap for the neat epoxy resin is less than for nanocomposites, and it decreases with increase in the POSS content. The refractive index of nanocomposites was determined from the calculated values of absorption and reflectance. It was found that the refractive index and the dielectric constants increased with increase in the POSS concentration. The optical conductivity, which is a measure of the optical absorption, increased with the POSS content. Furthermore, it was found that the glass transition temperature and the optical energy gap correlate well with the POSS filler concentration.  相似文献   

2.
The optical characterization of poly (ethylene oxide)/zinc oxide thin films has been done by analyzing the absorption spectra in the spectral wavelength region 380–800 nm using a ultraviolet-spectrophotometer at room temperature. Thin film polymer composites made of poly (ethylene oxide) (PEO) containing zinc oxide (ZnO) filler concentrations (0%, 2%, 6%, 10%, and 14%) by weight were used in this study. The optical results obtained were analyzed in terms of the absorption formula for non-crystalline materials. The optical energy gap and other basic optical constants such as dielectric constants and optical conductivity were investigated and showed a clear dependence on the ZnO filler concentration. It was found that the optical energy gap for the composite films is less than that for the neat PEO, and that it decreases as the ZnO concentration increases. Enhancement of the optical conductivity was observed with increase in the ZnO concentration. Dispersion of refractive index was analyzed using the Wemple–DiDomenico single oscillator model. The refractive index (n), extinction coefficient (k), and dispersion parameters (Eo, Ed) were calculated for the investigated films.  相似文献   

3.
Thin films of polymer electrolyte based on poly(ethylene oxide) doped with sodium iodide (NaI) were prepared using the solution cast method. The films obtained have average thickness of 70 μm and different NaI concentrations. Absorption and reflectance spectra of UV-radiation were studied in the wavelength range 300-800 nm. The optical results were analyzed in terms of absorption formula for non-crystalline materials.The optical energy gap and the basic optical constants, refractive index, and dielectric constants of the prepared films have been investigated and showed a clear dependence on the NaI concentration. The interpreted absorption mechanism is a direct electron transition.The observed optical energy gap for neat poly(ethylene oxide) is about 2.6 eV, and decreases to a value 2.36 eV for the film of 15 wt% NaI content. It was found that the calculated refractive index and the dielectric constants of the polymer electrolyte thin films increase with NaI content. Models were used to describe the dependences of the dielectric constant on the NaI concentration, and the refractive index on the incident photon energy.  相似文献   

4.
Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10?3 eV K?1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.  相似文献   

5.
The microstructure, and the electrical and optical properties of undoped zinc oxide (ZnO) and cadmium-doped ZnO (CZO) films deposited by a sol–gel method have been investigated. The films have a polycrystalline structure with hexagonal wurtzite ZnO. Scanning electron microscopy (SEM) images indicated that the films have a wrinkle network with uniform size distributions. The elemental analyses of the CZO films were carried out by energy dispersive X-ray analysis. The fundamental absorption edge changed with doping. The optical band gap of the films decreased with Cd dopant. The optical constants of the films such as refractive index, extinction coefficient and dielectric constants changed with Cd dopant. A two-probe method was used to investigate the electrical properties, and the effect of Cd content on the electrical properties was investigated. The electrical conductivity of the films was improved by incorporation of Cd in the ZnO film.  相似文献   

6.
The electrical conductivity, structural and optical properties of ZnO nanostructured semiconductor thin film prepared by sol-gel spin coating method have been investigated. The X-ray diffraction result indicates that the ZnO film has the polycrystalline nature with average grain size of 28 nm. The optical transmittance spectrum indicates the average transmittance higher than 90% in visible region. The optical band gap, Urbach energy and optical constants (refractive index, extinction coefficient, real and imaginary parts of the dielectric constant) of the film were determined. The electrical conductivity of the film dependence of temperature was measured to identify the dominant conductivity mechanism. The conductivity mechanism of the film is the thermally activated band conduction. The electrical conductivity and optical results revealed that the ZnO film is an n-type nanostructured semiconductor with a direct band gap of about 3.30 eV at room temperature.  相似文献   

7.
Transparent conductive ZnO film was deposited on glass substrate by pulsed filtered cathodic vacuum arc deposition (PFCVAD). Optical parameters such as absorption coefficient α, the refractive index n, energy band gap Eg and dielectric constants have been determined using different methods. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. The spectra of the dielectric coefficient were used to calculate the energy band gap and the value was 3.24 eV. The experimental energy band gap was found to be 3.22 eV for 357 nm thick ZnO thin film. The envelope method was also used to calculate the refractive index and the data were consistent with K-K relation results. The structure of the film was analyzed with an x-ray diffractometer and the film was polycrystalline in nature with preferred (002) orientation.  相似文献   

8.
Polycarbonate/polystyrene bilayer films prepared by solvent-casting method were irradiated with 55 MeV carbon ion beam at different fluences ranging from 1×1011 to 1×1013 ions cm?2. The structural, optical, surface morphology and dielectric properties of these films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, optical microscopy and dielectric measurements. The XRD pattern shows that the percentage of crystallinity decreases while inter-chain separations increase with ion fluence. UV–visible spectroscopy shows that the energy band gap decreases and the number of carbon atoms in nanoclusters increase with the increase in ion fluences. The refractive index is also found to decrease with the increase in the ion fluence. Optical microscopy shows that after irradiation polymeric bilayer films color changes with ion fluences. The FTIR spectra evidenced a very small change in cross-linking and chain scissoring at high fluence. Dielectric constant decreases while dielectric loss and AC conductivity increase with ion fluences.  相似文献   

9.
Zinc oxide (ZnO) and aluminium (Al) doped zinc oxide (AZO) thin films have been fabricated by spray pyrolysis technique in normal atmospheric condition. Samples of different Al-concentrations (0–5% Al) were deposited at 350 °C onto glass substrate to study the structural, morphological, optical and photoluminescence properties. X-ray diffraction study confirms that the films are polycrystalline having hexagonal structure. SEM images show that the films have rope and tube like morphology. Optical properties, such as transmittance, optical band gap, extinction coefficient, refractive index, optical conductivity, dielectric constants and electron energy loss functions were analyzed and discussed. Results show that the optical parameters have been changed significantly with Al-doping concentration. The photoluminescence spectra indicate that the PL peaks originated from deep level emissions (DLE) with different intensities for ZnO and Al-doped ZnO films.  相似文献   

10.
采用密度泛函理论框架下的第一性原理平面波赝势方法,计算单轴应变下闪锌矿氮化铟的电子结构及光学性质.结果表明:施加应变会使带隙变窄.对于拉应变,随着应变增大带隙减小程度增大;对于压应变,随应变增大带隙减小程度减弱;且拉、压应变对带隙调控都是线性的.在能量区间4 eV~12 eV范围内施加应变时,氮化铟的吸收光谱发生红移,随拉应变程度增加,吸收光谱的红移进一步加大;随压应变增加,吸收光谱红移减弱;在该范围内,氮化铟的折射率、反射率随拉应变的增大而增加,随压应变增加减小;施加拉应变时能量损失函数峰值增大,施加压应变后能量损失函数峰值减小.通过施加单轴应变能有效调节氮化铟材料的电结构及光学性质.  相似文献   

11.
The present study focuses on the effects of gamma irradiation on structural and optical properties of polycrystalline Ga10Se85Sn5 thin films with a thickness of ~300?nm deposited by the thermal evaporation technique on cleaned glass substrates. X-ray diffraction patterns of the investigated thin films show that crystallite growth occurs in the orthorhombic phase structure. The surface study carried out by using the scanning electron microscope (SEM) confirms that the grain size increases with gamma irradiation. The optical parameters were estimated from optical transmission spectra data measured from a UV–vis-spectrophotometer in the wavelength range of 200–1100?nm. The refractive index dispersion data of the investigated thin films follow the single oscillator model. The estimated values of static refractive index n0, oscillator strength Ed, zero frequency dielectric constant ε0, optical conductivity σoptical and the dissipation factor increases after irradiation, while the single oscillator energy Eo decreases after irradiation. It was found that the value of the optical band gap of the investigated thin films decreases and the corresponding absorption coefficient increases continuously with an increase in the dose of gamma irradiation. This post irradiation changes in the values of optical band gap and absorption coefficient were interpreted in terms of the bond distribution model.  相似文献   

12.
The aim of this work is to investigate the optical constants of aluminum doped zinc oxide films annealed at different temperatures. With increasing temperature, due to decreasing unfilled inter-granular volume per unit thickness, the optical transmittance spectra of films were increased. The films have a normal dispersion in the spectral range 400?<?λ?<?500 nm and the anomalous dispersion in IR range. The lattice dielectric constants εL, the free charge carriers concentration, the plasma frequency, Spitzer–Fan model and the waste of electrical energy as heat of films can be analyzed using the refractive index n and the extinction coefficient k spectra. With increasing annealing temperature, the lattice dielectric constants εL of films decrease however the free charge carriers concentration of films increase. The free carrier electric susceptibility of films annealed at 600 °C has maximum value. The energy loss by the free charge carriers when traversing the bulk and surface of films annealed at 600 °C has a minimum value in the near fundamental absorption edge and it with increasing energy increases.  相似文献   

13.
From several years the study of binary compounds has been intensified in order to find new materials for solar photocells. The development of thin film solar cells is an active area of research at this time. Much attention has been paid to the development of low cost, high efficiency thin film solar cells. CdTe is one of the suitable candidates for the production of thin film solar cells due to its ideal band gap, high absorption coefficient. The present work deals with thickness dependent study of CdTe thin films. Nanocrystalline CdTe bulk powder was synthesized by wet chemical route at pH≈11.2 using cadmium chloride and potassium telluride as starting materials. The product sample was characterized by transmission electron microscope, X-ray diffraction and scanning electron microscope. The structural characteristics studied by X-ray diffraction showed that the films are polycrystalline in nature. CdTe thin films with thickness 40, 60, 80 and 100 nm were prepared on glass substrates by using thermal evaporation onto glass substrate under a vacuum of 10−6 Torr. The optical constants (absorption coefficient, optical band gap, refractive index, extinction coefficient, real and imaginary part of dielectric constant) of CdTe thin films was studied as a function of photon energy in the wavelength region 400–2000 nm. Analysis of the optical absorption data shows that the rule of direct transitions predominates. It has been found that the absorption coefficient, refractive index (n) and extinction coefficient (k) decreases while the values of optical band gap increase with an increase in thickness from 40 to 100 nm, which can be explained qualitatively by a thickness dependence of the grain size through decrease in grain boundary barrier height with grain size.  相似文献   

14.
The optical properties of ethylene vinyl acetate (EVA) film have been studied. The effects of gamma irradiations on the optical spectrum of EVA films have been investigated using spectrophotometric measurements of reflectance and transmittance in the wavelength range 200–1100 nm. The absorption spectra were recorded in the UV–vis region for the unirradiated and irradiated films (from 0 to 50 kGy). Optical constants such as refractive index (n), extinction coefficient (K), and complex dielectric constant have been determined, as well as the optical dispersion parameters and high frequency dielectric constants. A large dependence of the fundamental optical constants on the irradiation dose was noticed. On irradiation, a higher refractive index was obtained as compared with that for unirradiated film. The dispersion parameters, such as E 0 (single‐oscillator energy), E d (dispersive energy), and M ?1 and M ?3 (moments), are discussed in terms of the single‐oscillator Wemple–DiDomenico model.  相似文献   

15.
Amorphous thin films of Se80xTe20Sbx (x = 0, 6, 12) chalcogenide glasses has been deposited onto pre-cleaned glass substrate using thermal evaporation technique under a vacuum of 10−5 Torr. The absorption and transmission spectra of these thin films have been recorded using UV spectrophotometer in the spectral range 400–2500 nm at room temperature. Swanepoel envelope method has been employed to obtain film thickness and optical constants such as refractive index, extinction coefficient and dielectric constant. The optical band gap of the samples has been calculated using Tauc relation. The study reveals that optical band gap decreases on increase in Sb content. This is due to decrease in average single bond energy calculated using chemical bond approach. The values of urbach energy has also been computed to support the above observation. Variation of refractive index has also been studies in terms of wavelength and energy using WDD model and values of single oscillator energy and dispersion energy has been obtained.  相似文献   

16.
The optical constants (absorption coefficient, refractive index, extention coefficient, real and imaginary part of dielectric constant) have been studied for a-Se80Te20−xPbx (where x = 0, 2, 6, 10) thin films as a function of photon energy in the wave length range (500–1000 nm). It has been found that the optical band gap increases while the refractive index and the extinction coefficient (k) decreases on incorporation of lead in Se–Te system. The value of absorption coefficient (α) and the extinction coefficient (k) increases, while the value of refractive index (n) decreases with incident photon energy. The results are interpreted in terms of the change in concentration of localized states due to the shift in fermi level.  相似文献   

17.
The dc electrical conductivity of as deposited thin films of a-SexTe100?x (x=3, 6, 9 and 12) is measured as a function of temperature range from 298 to 383 K. It is observed that the dc conductivity increases exponentially with the increase in temperature in this glassy system. The value of activation energy calculated from the slope of ln σdc vs. 1000/T plot, is found to decrease on incorporation of dopant (Se) content in the Te system. On the basis of pre-exponetial factor (σ0), it is suggested that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges. The optical absorption measurements show an indirect optical band gap in this system and it decreases on increasing Se concentration. The optical constants (extinction coefficient (k) and refractive index (n)) do change significantly with the photon energy and also with the dopant Se concentration. The decrease in optical band gap may be due to the decrease in activation energy in the present system. It is also found that the real and imaginary parts of dielectric constants show a significant change with the photon energy as well as with the dopant concentration. With large absorption coefficients and compositional dependence of optical band gap and optical constants (n and k), these materials may be suitable for optical disk applications.  相似文献   

18.
The synthesis and optical properties of the 5,5′,6,6′-tetraphenyl-2,2′-bi([1,3]dithiolo [4,5-b] [1,4]dithiinylidene)–2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) complex thin film were investigated by the optical characterization. The optical constants such as refractive index, extinction coefficient and absorption coefficient were determined using the transmittance T(λ) and reflectance R(λ) spectra and the refractive index dispersion was analyzed using single oscillator of Wemple–Didomenico model. The single oscillator energy E0 and the dispersion energy Ed were calculated. The effect of temperature on refractive dispersion and optical band gap Eg is also discussed. As a result, the annealing temperatures have an important effect on refractive index of thin film.  相似文献   

19.
The variation in physical, optical and electrical properties has been investigated as a function of Bi2O3 content in 20CaO?·?xBi2O3?·?(80???x)B2O3 (0?≤?x?≤?60, in mol%) glasses. The samples were prepared by normal melt-quenching process, and the optical absorption and reflection spectra were recorded in the wavelength range of 400–950 nm. The fundamental absorption edge has been identified from the optical absorption spectra. The optical band gap, E g, for indirect allowed and indirect forbidden transitions has been determined from the available theories and its value lies between 1.80–2.37 eV and 1.08–2.19 eV, respectively. The theoretical fitting of the optical absorption indicates that the present glass system behaves as an indirect gap semiconductor. The origin of the Urbach energy, ΔE, has been associated with the phonon-assisted indirect transitions. The refractive index and optical dielectric constant have been evaluated from the reflection spectra. The density and molar volume are found to depend on the molar concentration of Bi2O3. The values of DC electrical conductivity have been measured from 373 to 623 K and the activation energy has been calculated. Theoretical optical basicity has been reported as a function of the Bi2O3 content. The variations have been discussed in terms of structural changes.  相似文献   

20.
Cd1-xZnxS thin films were deposited by chemical bath deposition (CBD) technique, which is simple and cost effective, in a chemical bath containing appropriate amount of cadmium acetate, zinc acetate, and thiourea as precursors, in a clean glass substrate. The deposition was carried out by varying the bath temperatures (70 °C, 75 °C, 80 °C, and 85 °C) of the precursor solution. The XRD results indicate the existence of hexagonal structures of Cd1-xZnxS with an average crystallite size of ∼ 27–41 nm. EDX studies confirm the presence of Cd, Zn, and S in the films. HRTEM and SAED patterns show the crystalline nature of the films with the coexistence of the hexagonal phase. The optical constants viz; optical band gap, Urbach energy, static refractive index, and optical conductivity were studied by using UV- Vis transmission spectra as a function of CBD temperature. It was observed that with the increase of bath temperature in the above range, there were concomitant decreases in optical band gap from ∼3.3 to 2.8 eV. The Urbach energy, optical conductivity, and static refractive index of the films increase with the increase in bath deposition temperature. FTIR studies confirm the formation of ternary Cd1-xZnxS thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号