首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Areneselenenyl iodide stabilised by internal chelation has been synthesized and evaluated as a substrate of thioredoxin reductase (TrxR). The reactivity of TrxR obtained from human placenta towards selenenyl iodide was found to be much higher than that of the E. coli enzyme, indicating the essential nature of a selenocysteine residue in the active site of the human enzyme. The addition of thioredoxin (Trx) significantly enhanced the TrxR-catalysed reduction of selenenyl iodide 1. These studies on the reduction of a selenenyl iodide by the thioredoxin system suggest that stable selenenyl iodides could be new substrates for human TrxR. The Trx system could act as a cofactor for iodothyronine deiodinase by reducing the selenenyl iodide intermediate in the second-half of the deiodinase catalytic cycle to regenerate the active site. The TrxR-catalysed reduction of 1 was not inhibited by the anti-thyroid drug, PTU, suggesting that the involvement of the Trx system in the deiodinase cycle may be responsible for the insensitivity of certain deiodinases towards clinically useful thiourea drugs.  相似文献   

2.
Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.  相似文献   

3.
The type 1 iodothyronine deiodinase (1D‐1) in liver and kidney converts the L ‐thyroxine ( T4 ), a prohormone, by outer‐ring (5′) deiodination to biologically active 3,3′,5‐triiodothyronine ( T3 ) or by inner‐ring (5) deiodination to inactive 3,3′,5′‐triiodothronine ( rT3 ). Sulfate conjugation is an important step in the irreversible inactivation of thyroid hormones. While sulfate conjugation of the phenolic hydroxyl group stimulates the 5‐deiodination of T4 and T3 , it blocks the 5′‐deiodination of T4 . We show that thyroxine sulfate ( T4S ) undergoes faster deiodination as compared to the parent thyroid hormone T4 by synthetic selenium compounds. It is also shown that ID‐3 mimics, which are remarkably selective to the inner‐ring deiodination of T4 and T3 , changes the selectivity completely when T4S is used as a substrate. From the theoretical investigations, it is observed that the strength of halogen bonding increases upon sulfate conjugation, which leads to a change in the regioselectivity of ID‐3 mimics towards the deiodination of T4S . It has been shown that these mimics perform both the 5′‐ and 5‐ring deiodinations by an identical mechanism.  相似文献   

4.
A solid‐phase liquid chromatography tandem mass spectrometry (SPE LC‐MS/MS) method was developed to determine thyroid hormones and their metabolites in tissue samples. The separation was achieved using reversed‐phase ultra‐performance liquid chromatography (UPLC); the mass spectrometric detection was achieved by positive electrospray ionization and multiple reaction monitoring. Prior to the UPLC separation a sample cleanup with a cation exchange was performed. 13 C6 labeled internal standards were used for the thyroid hormones and their metabolites. The method was linear over a range from 0.23 to 90 nmol/L for thyroxine and from 0.23 to 9 nmol/L for the metabolites. The lower limit of quantification ranged from 0.98 to 1.73 pg on column. Intra‐ and total assay variation were <10 and <15%, respectively. This method enables us to link thyroid hormone tissue concentrations to local iodothyronine deiodinase expressions, which will enhance our understanding of the regulation of thyroid hormone metabolism on the tissue level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Sarma BK  Mugesh G 《Inorganic chemistry》2006,45(14):5307-5314
The roles of built-in thiol cofactors and the basic histidine (His) residues in the active site of mammalian thioredoxin reductases (TrxRs) are described with the help of experimental and density functional theory calculations on small-molecule model compounds. The reduction of selenenyl sulfides by thiols in selenoenzymes such as glutathione peroxidase (GPx) and TrxR is crucial for the regeneration of the active site. Experimental as well as theoretical studies were carried out with model selenenyl sulfides to probe their reactivity toward incoming thiols. We have shown that the nucleophilic attack of thiols takes place at the selenium center in the selenenyl sulfides. These thiol exchange reactions would hamper the regeneration of the active species selenol. Therefore, the basic His residues are expected to play crucial roles in the selenenyl sulfide state of TrxR. Our model study with internal amino groups in the selenenyl sulfide state reveals that the basic His residues may play important roles by deprotonating the thiol moiety in the selenenic acid state and by interacting with the sulfur atom in the selenenyl sulfide state to facilitate the nucleophilic attack of thiol at sulfur rather than at selenium, thereby generating the catalytically active species selenol. This model study also suggests that the enzyme may use the internal cysteines as cofactors to overcome the thiol exchange reactions.  相似文献   

6.
Organoselenium compounds as functional mimics of iodothyronine deiodinase are described. The naphthyl-based compounds having two selenol groups are remarkably efficient in the inner-ring deiodination of thyroxine. The introduction of a basic amino group in close proximity to one of the selenol moieties enhances the deiodination. This study suggests that an increase in the nucleophilic reactivity of the conserved Cys residue at the active site of deiodinases is very important for effective deiodination.  相似文献   

7.
Hydrogen peroxide, generated by thyroid oxidase enzymes, is a crucial substrate for the thyroid peroxidase (TPO)-catalysed biosynthesis of thyroid hormones, thyroxine (T4) and triiodothyronine (T3) in the thyroid gland. It is believed that the H2O2 generation is a limiting step in thyroid hormone synthesis. Therefore, the control of hydrogen peroxide concentration is one of the possible mechanisms for the inhibition of thyroid hormone biosynthesis. The inhibition of thyroid hormone synthesis is required for the treatment of hyperthyroidism and this can be achieved by one or more anti-thyroid drugs. The most widely used anti-thyroid drug methimazole (MMI) inhibits the production of thyroid hormones by irreversibly inactivating the enzyme TPO. Our studies show that the replacement of sulphur in MMI by selenium leads to a selone, which exists predominantly in its zwitterionic form. In contrast to the sulphur drug, the selenium analogue (MSeI) reversibly inhibits the peroxidase-catalysed oxidation and iodination reactions. Theoretical studies on MSeI reveal that the selenium atom in this compound carries a large negative charge. The carbon-selenium bond length in MSeI is found to be close to single-bond length. As the selenium atom exhibits a large nucleophilic character, the selenium analogue of MMI may scavenge the hydrogen peroxide present in the thyroid cells, which may lead to a reversible inhibition of thyroid hormone biosynthesis.  相似文献   

8.
The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.  相似文献   

9.
A revised mechanism that accounts for the glutathione peroxidase (GPx)-like catalytic activity of the organoselenium compound ebselen is described. It is shown that the reaction of ebselen with H(2)O(2) yields seleninic acid as the only oxidized product. The X-ray crystal structure of the seleninic acid shows that the selenium atom is involved in a noncovalent interaction with the carbonyl oxygen atom. In the presence of excess thiol, the Se--N bond in ebselen is readily cleaved by the thiol to produce the corresponding selenenyl sulfide. The selenenyl sulfide thus produced undergoes a disproportionation in the presence of H(2)O(2) to produce the diselenide, which upon reaction with H(2)O(2), produces a mixture of selenenic and seleninic acids. The addition of thiol to the mixture containing selenenic and seleninic acids leads to the formation of the selenenyl sulfide. When the concentration of the thiol is relatively low in the reaction mixture, the selenenic acid undergoes a rapid cyclization to produce ebselen. The seleninic acid, on the other hand, reacts with the diselenide to produce ebselen as the final product. DFT calculations show that the cyclization of selenenic acids to the corresponding selenenyl amides is more favored than that of sulfenic acids to the corresponding sulfenyl amides. This indicates that the regeneration of ebselen under a variety of conditions protects the selenium moiety from irreversible inactivation, which may be responsible for the biological activities of ebselen.  相似文献   

10.
Polymer-supported selenovinyl bromide, easily prepared from polymer-supported selenenyl bromide with acetylene, reacts with different Grignard reagents using a step-by-step strategy to obtain (E)-1, 2-disubstituted ethenes in good yields.  相似文献   

11.
We elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of iodothyronine deiodinases (IDs) of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. These radiometric enzyme assays were based on the use of high-specific-radioactivity 125I-labeled iodothyronines as substrates; TLC separation of radioactive products from the unconsumed substrates; film-less autoradiography of radiochromatograms using storage phosphor screens; and quantification of the separated compounds with a BAS-5000 laser scanner. This methodology enabled us to determine IDs enzyme activities as low as 10−18 katals. The applicability of our sophisticated methods was demonstrated by following the alterations of IDs activities induced in cultured astroglial cells by a series of purinergic agonists, retinoic acid, and their combination. In addition, in case of ATP as a representative of purinergic agonists, we determined time-course and dose–response curves to characterize in more details the induction of each type of deiodinase by purines.  相似文献   

12.
At the redox-active center of thioredoxin reductase (TrxR), a selenenyl sulfide (Se−S) bond is formed between Cys497 and Sec498, which is activated into the thiolselenolate state ([SH,Se]) by reacting with a nearby dithiol motif ([SHCys59,SHCys64]) present in the other subunit. This process is achieved through two reversible steps: an attack of a cysteinyl thiol of Cys59 at the Se atom of the Se−S bond and a subsequent attack of a remaining thiol at the S atom of the generated mixed Se−S intermediate. However, it is not clear how the kinetically unfavorable second step progresses smoothly in the catalytic cycle. A model study that used synthetic selenenyl sulfides, which mimic the active site structure of human TrxR comprising Cys497, Sec498, and His472, suggested that His472 can play a key role by forming a hydrogen bond with the Se atom of the mixed Se−S intermediate to facilitate the second step. In addition, the selenenyl sulfides exhibited a defensive ability against H2O2-induced oxidative stress in cultured cells, which suggests the possibility for medicinal applications to control the redox balance in cells.  相似文献   

13.
Crystal structure determination and AM1 molecular orbital calculations were performed on the flavone, 3,5 — dibromo — 3 — methyl — 6,4 — dihydroxyflavone (EMD21388), crystallized as a (1:2) triphenylphosphine oxide (TPPO) co-crystal complex. This is also the first structural report of a 21 TPPO co-crystal complex with a flavone. The calculated molecular structure is in good agreement with the observed crystallographic conformation which shows that the angle between the benzopyrone and phenyl rings,, [C(3)-C(2)-C(1)-C(6)] is 49.1(8)°, compared with the geometry-optimized minimum energy angle of 46.0°. The barrier to rotation in this system is about 3.5 kcal/mol. Biochemical data for EMD 21388 show it is the most potent inhibitor of the enzyme iodothyronine deiodinase and is the strongest competitor for the binding of thyroxine to its serum transport protein transthyretin. This analysis reveals that the flavone can adopt a conformation that has structural homology with the thyroid hormone.  相似文献   

14.
The inhibition of lactoperoxidase (LPO)-catalyzed iodination of l-tyrosine by the anti-thyroid drug methimazole (MMI) and its selenium analogue (MSeI) is described. MSeI inhibits LPO with an IC(50) value of 12.4 microM, and this inhibition could be completely reversed by increasing the peroxide concentration. In addition to the inhibition, MSeI reacts with molecular iodine to produce novel ionic diselenides, and the nature of the species formed in this reaction appear to be solvent-dependent. The formation of ionic species in the reaction is confirmed by single-crystal X-ray studies, FT-IR and FT-Raman spectroscopic investigations. This study provides the first experimental evidence that MSeI not only effectively inhibits the LPO-catalyzed iodination of tyrosine, but also reacts with I(2) to produce novel ionic diselenides. These results also suggest that MSeI reacts with iodine, even in its oxidized form, to form ionic diselenides containing iodide or polyiodide anions, which might be effective intermediates in the inhibition of thyroid hormones.  相似文献   

15.
Tyrosinases catalyze hydroxylation of monophenols to o-diphenols and their subsequent oxidation to o-quinones, whereas catecholoxidases catalyze only the latter reaction. Both enzymes occur in all organisms and are Type 3 copper proteins that perform the first steps of melanin formation. In arthropods, they play an essential role in the sclerotization of the exoskeleton. Very few phenoloxidases are characterized structurally or kinetically and the existence of an actual tyrosinase activity has not been demonstrated in most cases. Here we present for the first time a complete kinetic characterization of a tyrosinase from a crustacean (Palinurus elephas) including the influence of inhibitors. In contrast to most tyrosinases which are monomeric or dimeric, this tyrosinase occurs as a hexamer. However, the data did not indicate cooperativity in steady-state kinetics for the two substrates used, the monophenol tyramine and the diphenol dopamine. Mimosine as well as phenylthiourea (PTU) inhibited both monophenolhydroxylase and diphenoloxidase activity. Inhibition by mimosine was competitive, whereas PTU was a noncompetitive inhibitor. Furthermore, for the diphenolase activity substrate inhibition was observed, which was apparently abolished by adding PTU. These observations lead to the hypothesis that a secondary, allosteric binding site exists, which binds dopamine and PTU and reduces the catalytic activity.  相似文献   

16.
The synthesis, structure, and thiol peroxidase-like antioxidant activities of several diaryl diselenides having intramolecularly coordinating amino groups are described. The diselenides derived from enantiomerically pure R-(+)- and S-(-)-N,N-dimethyl(1-ferrocenylethyl)amine show excellent peroxidase activity. To investigate the mechanistic role of various organoselenium intermediates, a detailed in situ characterization of the intermediates has been carried out by (77)Se NMR spectroscopy. While most of the diselenides exert their peroxidase activity via selenol, selenenic acid, and selenenyl sulfide intermediates, the differences in the relative activities of the diselenides are due to the varying degree of intramolecular Se.N interaction. The diselenides having strong Se.N interactions are found to be inactive due to the ability of their selenenyl sulfide derivatives to enhance the reverse GPx cycle (RSeSR + H(2)O(2) = RSeOH). In these cases, the nucleophilic attack of thiol takes place preferentially at selenium rather than sulfur and this reduces the formation of selenol by terminating the forward reaction. On the other hand, the diselenides having weak Se.N interactions are found to be more active due to the fast reaction of the selenenyl sulfide derivatives with thiol to produce diphenyl disulfide and the expected selenol (RSeSR + PhSH = PhSSPh + RSeH). The unsubstituted diaryl diselenides are found to be less active due to the slow reactions of these diselenides with thiol and hydrogen peroxide and also due to the instability of the intermediates. The catalytic cycles of 18 and 19 strongly resemble the mechanism by which the natural enzyme, glutathione peroxidase, catalyzes the reduction of hydroperoxides.  相似文献   

17.
Peptidic inhibition of the enzyme tyrosinase, responsible for skin pigmentation and food browning, would be extremely useful for the food, cosmetics, and pharmaceutical industries. In order to identify novel inhibitory peptides, a library of short sequence oligopeptides was screened to reveal direct interaction with the tyrosinase. A phage displaying heptapeptide (IQSPHFF) was found to bind most strongly to tyrosinase. The inhibitory activity of the heptapeptide was evaluated using mushroom tyrosinase. The results showed that the peptide inhibited both the monophenolase and diphenolase activities of mushroom tyrosinase with IC50 values of 1.7 and 4.0 mM, respectively. The heptapeptide is thought to be a reversible competitive inhibitor of diphenolase with the inhibition constants (Ki) of 0.765 mM. To further investigate how the heptapeptide exerts its inhibitory effect, a docking study between tyrosinase and heptapeptide was performed. The simulation showed that the heptapeptide binds in the active site of the enzyme near the catalytically active Cu ions and forms hydrogen bonds with five histidine residues on the active site. Phage display technology is thus a useful approach for the screening of potential tyrosinase inhibitors and could be widely applicable to a much wider range of enzymes.  相似文献   

18.
The inhibitory effect of 1,3-substituted p-tert-butylcalix[4]arenes on butyrylcholinesterase from horse serum has been discovered and kinetically investigated with photometric microassay techniques. The interaction of calix[4]arene with the enzyme is described in accordance with the formal kinetics of competitive reversible inhibition. The inhibition constants calculated depend on the substituent in the lower rim of the calix[4]arene and vary in the range of (5–110) × 10-6 M. The proposed mechanism of inhibition involves the cooperative interaction of indophenyl acetate used as a substrate, calix[4]arene and the enzyme without any covalent or electrostatic binding of the functional groups in the active site of cholinesterase. This results in the coordination of the calixarene on the enzyme surface in the proximity of the enzyme active site. Such interaction prevents the substrate from entering the enzyme active site.  相似文献   

19.
CYP19A1 aromatase is a member of the Cytochrome P450 family of hemeproteins, and is the enzyme responsible for the final step of the androgens conversion into the corresponding estrogens, via a three‐step oxidative process. For this reason, the inhibition of this enzyme plays an important role in the treatment of hormone‐dependent breast cancer. The first catalytic subcycle, corresponding to the hydroxilation of androstenedione, has been proposed to occur through a first hydrogen abstraction and a subsequent oxygen rebound step. In present work, we have studied the mechanism of the first catalytic subcycle by means of hybrid quantum mechanics/molecular mechanics methods. The inclusion of the protein flexibility has been achieved by means of Free Energy Perturbation techniques, giving rise to a free energy of activation for the hydrogen abstraction step of 13.5 kcal/mol. The subsequent oxygen rebound step, characterized by a small free energy barrier (1.5 kcal/mol), leads to the hydroxylated products through a highly exergonic reaction. In addition, an analysis of the primary deuterium kinetic isotopic effects, calculated for the hydrogen abstraction step, reveals values (~10) overpassing the semiclassical limit for the C? H, indicating the presence of a substantial tunnel effect. Finally, a decomposition analysis of the interaction energy for the substrate and cofactor in the active site is also discussed. According to our results, the role of the enzymatic environment consists of a transition state stabilization by means of dispersive and polarization effects. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
硒是哺乳动物必需的一种微量营养元素,主要以硒代半胱氨酸的形式存在于各种硒蛋白中,硒的主要生物功能通过硒蛋白实现.在25种哺乳动物硒蛋白中,有7种硒蛋白位于内质网,分别为2型脱碘酶、15-kDa硒蛋白、硒蛋白M、硒蛋白T、硒蛋白K、硒蛋白S和硒蛋白N.除了2型脱碘酶外,对其余内质网硒蛋白知之甚少.最近一些研究显示,一些内质网硒蛋白在氧化还原平衡调节、蛋白质折叠质量控制、错误折叠蛋白从内质网逆向转运至胞质、Ca2+稳态调节、内质网应激调节及炎症调节等过程中发挥作用.本文介绍了每种内质网硒蛋白的结构、功能及其生理和病理作用的一些最新研究进展,并对未来需要研究的内容进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号