首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state. The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated. Crystals of [(V(V)O(2))(2)(pyren)(2)].2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine. The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems. Very significant differences in the metal-binding abilities of the ligands were found. Both 1 and 2 act as tetradentate ligands. H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2). The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution. DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes. Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.  相似文献   

2.
There are number of important developments in the area of elastomeric polymers, including (i) network chains of controlled stiffness, (ii) model elastomers (including dangling-chain networks), (iii) fluorosiloxane elastomers, (iv) new thermoplastic elastomers, (v) other new elastomers, (v) bimodal network chain-length distributions, (vi) cross linking in solution or in a state of deformation, and (vii) gel collapse. Interesting elastomeric composites include those with (i) in-situ generated ceramic-like particles, (ii) ellipsoidal fillers, (iii) clay-like layered fillers, (iv) polyhedral oligomeric silsesquioxane (POSS) particles, (v) porous fillers, (vi) elastomeric domains modifying ceramics, and (vii) controlled interfaces. New characterization techniques are being developed for elastomers, and there have been new developments in elasticity theory and in elastomer processing. Some examples of societal aspects of relevance are (i) synthesis of elastomers in environmentally-friendly solvents, (ii) biosynthesis, (iii), recyclability, (iv) improved adhesion to tire cords, and (v) better barrier properties in anti-terrorism clothing. Educational topics include curriculum development, and mobile laboratories for elastomer experiments and demonstrations.  相似文献   

3.
Li(4)V(3)O(8) materials have been prepared by chemical lithiation by Li(2)S of spherical Li(1.1)V(3)O(8) precursor materials obtained by a spray-drying technique. The over-lithiated vanadates were characterised physically by using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and electrochemically using galvanostatic charge-discharge and cyclic voltammetry measurements in both the half-cell (vs. Li metal) and full-cell (vs. graphite) systems. The Li(4)V(3)O(8) materials are stable in air for up to 5 h, with almost no capacity drop for the samples stored under air. However, prolonged exposure to air will severely change the composition of the Li(4)V(3)O(8) materials, resulting in both Li(1.1)V(3)O(8) and Li(2)CO(3). The electrochemical performance of these over-lithiated vanadates was found to be very sensitive to the conductive additive (carbon black) content in the cathode. When sufficient carbon black is added, the Li(4)V(3)O(8) cathode exhibits good cycling behaviour and excellent rate capabilities, matching those of the Li(1.1)V(3)O(8) precursor material, that is, retaining an average charge capacity of 205 mAh g(-1) at 2800 mA g(-1) (8C rate; 1C rate means full charge or discharge of a battery in one hour), when cycled in the potential range of 2.0-4.0 V versus Li metal. When applied in a non-optimised full cell system (vs. graphite), the Li(4)V(3)O(8) cathode showed promising cycling behaviour, retaining a charge capacity (Li(+) extraction) above 130 mAh g(-1) beyond 50 cycles, when cycled in the voltage range of 1.6-4.0 V, at a specific current of 117 mA g(-1) (C/3 rate).  相似文献   

4.
The synthesis of the crown-ether-substituted bis(organostannyl)methanes Ph(3)SnCH(2)Sn(Ph(2))-CH(2)-[16]crown-5 (1) and Ph(2)ISnCH(2)Sn(I)(Ph)-CH(2)-[16]crown-5 (2) is reported. Both compounds have been characterized by elemental analyses, (1)H, (13)C, (19)F, and (119)Sn NMR spectroscopy, and in the case of compound 2 also by electrospray ionization mass spectrometry. Single-crystal X-ray diffraction analysis revealed for the aqua complex 2.H(2)O trigonal-bipyramidal-configured tin atoms with intramolecular Sn(1)-O(1) and Sn(2)-O(1W) distances of 2.555(2) and 2.440(3) A, respectively. The water molecule is trapped in a sandwich-like fashion between the crown ether oxygen atoms O(2) and O(4) and the Sn(2) atom. NMR spectroscopy unambiguously proved the ability of compound 2 in acetonitrile to overcome the high lattice energy of sodium fluoride and to complex the latter under charge separation.  相似文献   

5.
The reaction of the bis(ethylene) complex [Tp(Me(2) )Ir(C(2)H(4))(2)] (1) (Tp(Me(2) ): hydrotris(3,5-dimethylpyrazolyl)borate) with two equivalents of dimethyl acetylenedicarboxylate (DMAD) in CH(2)Cl(2) at 25 degrees C gives the hydride-alkenyl species [Tp(Me(2) )IrH{C(R)=C(R)C(R)=C(R)CH=CH(2)}] (2, R: CO(2)Me) in high yield. A careful study of this system has established the active role of a number of intermediates en route to producing 2. The first of these is the iridium(I) complex [Tp(Me(2) )Ir(C(2)H(4))(DMAD)] (4) formed by substitution of one of the ethylene ligands in 1 by a molecule of DMAD. Complex 4 reacts further with another equivalent of the alkyne to give the unsaturated metallacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(R)=C(R)}], which can be trapped by added water to give adduct 7, or can react with the C(2)H(4) present in solution generating complex 2. This last step has been shown to proceed by insertion of ethylene into one of the Ir--C bonds of the metallacyclopentadiene and subsequent beta-H elimination. Complex 1 reacts sequentially with one equivalent of DMAD and one equivalent of methyl propiolate (MP) in the presence of water, with regioselective formation of the nonsymmetric iridacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(H)=C(R)}(H(2)O)] (9). Complex 9 reacts with ethylene giving a hydride-alkenyl complex 10, related to 2, in which the C(2)H(4) has inserted regiospecifically into the Ir--C(R) bond that bears the CH functionality. Heating solutions of either 2 or 10 in CH(2)Cl(2) allows the formation of the allyl species 3 or 11, respectively, by simple stereoselective migration of the hydride ligand to the Calpha alkenyl carbon atom and concomitant bond reorganization of the resulting organic chain. All the compounds described herein have been characterized by microanalysis, IR and NMR spectroscopy, and for the case of 3, 7, 7CO, 8NCMe, 9, 9NCMe, and 10, also by single-crystal X-ray diffraction studies.  相似文献   

6.
Single crystals of the complex boride series Sc(2)FeRu(5-n)Rh(n)B(2) (n=1, 3, 4) were synthesized by arc-melting the elements in water-cooled copper crucibles under argon atmospheres and were chemically characterized by single-crystal XRD and EDX analyses. The new compounds are isotypic and crystallize in the tetragonal space group P4/mbm with Z=2, adopting a substitutional variant of the Ti(3)Co(5)B(2)-type structure. The magnetically active iron atoms are arranged in chains with intra- and interchain distances of about 3.02 and 6.60 A, respectively. Strong ferromagnetic interactions are observed for both Sc(2)FeRuRh(4)B(2) (64 valence electrons (VE), TC approximately 350 K, mu(a)=3.1 mu(B)) and Sc(2)FeRu(2)Rh(3)B(2) (63 VE, T(C) approximately 300 K, mu(a)=3.0 mu(B)), whereas antiferromagnetic interactions are found in the case of Sc(2)FeRu(4)RhB(2) (61 VE, T(N) approximately 10 K, mu(eff)=3.2): The magnetism of the entire Sc(2)FeRu(5-n)Rh(n)B(2) (0相似文献   

7.
The modification of human myoglobin (HMb) by reaction with nitrite and hydrogen peroxide has been investigated. This reaction is important because NO(2) (-) and H(2)O(2) are formed in vivo under conditions of oxidative and nitrative stress, where protein derivatization has been often observed. The abundance of HMb in tissues and in the heart makes it a potential source and target of reactive species generated in the body. The oxidant and nitrating species produced by HMb/H(2)O(2)/NO(2) (-) are nitrogen dioxide and peroxynitrite, which can react with exogenous substrates and endogenous protein residues. Tandem mass analysis of HMb modified by stoichiometric amounts of H(2)O(2) and NO(2) (-) indicated the presence of two endogenous derivatizations: oxidation of C110 to sulfinic acid (76 %) and nitration of Y103 to 3-nitrotyrosine (44 %). When higher concentrations of NO(2) (-) and H(2)O(2) were used, nitration of Y146 and of the heme were also observed. The two-dimensional gel-electrophoretic analysis of the modified HMbs showed spots more acidic than that of wild-type HMb, a result in agreement with the formation of sulfinic acid and nitrotyrosine residues. By contrast, the reaction showed no evidence for the formation of protein homodimers, as observed in the reaction of HMb with H(2)O(2) alone. Both HMb and the modified HMb are active in the H(2)O(2)/NO(2) (-)-dependent nitration of exogenous phenols. Their catalytic activity is quite similar and the endogenous modifications of HMb therefore have little effect on the reactivity of the protein intermediates.  相似文献   

8.
《中国化学快报》2021,32(9):2792-2796
A self-synthesized bi-pyridine chelating resin (PAPY) could separate Cu(II)/Ni(II)/Fe(II) sequentially from strong-acidic pickling wastewater by a two-stage pH-adjusted process, in which Cu(II), Ni(II), and Fe(II) were successively preferred by PAPY. In the first stage (pH 1.0), the separation factor of Cu(II) over Ni(II) reached 61.43 in Cu(II)-Ni(II)-Fe(II) systems. In the second stage (pH 2.0), the separation factor of Ni(II) over Fe(II) reached 92.82 in Ni(II)-Fe(II) systems. Emphasis was placed on the selective separation of Cu(II) and Ni(II) in the first-stage. The adsorption amounts of Cu(II) onto PAPY were 1.2 mmol/g in the first stage, while those of Ni(II) and Fe(II) were lower than 0.3 mmol/g. Cu(II) adsorption was hardly affected by Ni(II) with the presence of dense Fe(II), but Cu(II) inhibited Ni(II) adsorption strongly. Part of preloaded Ni(II) could be replaced by Cu(II) based on the replacement effect. Compared with the absence of Fe(II), dense Fe(II) could obviously enhance the separation of Cu(II)-Ni(II). More than 95.0% of Cu(II) could be removed in the former 240 BV (BV for bed volume of the adsorbent) in the fixed-bed adsorption column process with the flow rate of 2.5 BV/h. As proved by X-ray photoelectron spectrometry (XPS) and density functional theory (DFT) analyses, Cu(II) exerted a much stronger deprotonation and chelation ability toward PAPY than Ni(II) and Fe(II). Thus, the work shows a great potential in the separation and purification of heavy metal resources from strong-acidic pickling wastewaters.  相似文献   

9.
赵宁  董文举  石起增 《电化学》2006,12(1):80-84
应用线性扫描循环伏安法、方波循环伏安法和计时电量法测定苯甲醛在3种离子液体C4M IMBF4、C6M IMBF4和C8M IMBF4中的电化学行为.实验表明,在C4M IIVIBF4离子液体中苯甲醛于GC电极上的还原包含两个连续、不可逆单电子过程,对应的方波I~E曲线峰电位Ep为-1.39 V和-1.69 V,估算的扩散系数分别为D1=1.5×10-8cm2/s和D2=1.3×10-8cm2/s.而在C6M IMBF4和C8M IMBF4离子液体中,则苯甲醛于GC电极仅显示一个电流峰,这可能是因为C4M IMBF4的碱性较C6M IMBF4和C8M IMBF4弱的缘故;而电流的衰减时间亦依C4M IMBF4,C6M IMBF4,C8M IMBF4,次序增长,并会导致更慢的异相动力学过程.  相似文献   

10.
In this study, (51)V, (45)Sc and (93)Nb MAS NMR combined with satellite transition spectroscopy analysis were used to characterize the complex solid mixtures: VNb(9(1-x))Ta(9x)O(25), ScNb((1-x))Ta(x)O(4) and ScNb(2(1-x))Ta(2x)VO(9) (x = 0, 0.3, 0.5, 0.7, 1.0). This led us to describe the structures of Sc and V sites. The conclusions were based on accurate values for (51)V quadrupole coupling and chemical shift tensors obtained with (51)V MAS NMR/SATRAS for VNb(9)O(25), VTa(9)O(25) and ScVO(4). The (45)Sc NMR parameters have been obtained for Sc(2)O(3), ScVO(4), ScNbO(4) and ScTaO(4). On the basis of (45)Sc NMR and data available from literature, the ranges of the (45)Sc chemical shift have been established for ScO(6) and ScO(8). The gradual change of the (45)Sc and (51)V NMR parameters with x confirms the formation of solid solutions in the process of synthesis of VNb(9(1-x))Ta(9x)O(25) and ScNb((1-x))Ta(x)O(4), in contrast to ScNb(2(1-x))Ta(2x)VO(9). The cation sublattice of ScNb((1-x))Ta(x)O(4) is found to be in octahedral coordination. The V sites in VNb(9(1-x))Ta(9x)O(25) are present in the form of slightly distorted tetrahedra. The (93)Nb NMR parameters have been obtained for VNb(9)O(25).  相似文献   

11.
The dititanium-containing 19-tungstodiarsenate(III) [Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)](8-) (1) has been synthesized and characterized by IR, TGA, elemental analysis, electrochemistry, and catalytic studies. Single-crystal X-ray analysis was carried out on Cs(8)[Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)].2CsCl.12H(2)O (Cs-1), which crystallizes in the monoclinic system, space group P2(1)/m, with a=12.7764(19), b=19.425(3), c=18.149(3) A, beta=110.234(3) degrees, and Z=2. Polyanion 1 comprises two (B-alpha-As(III)W(9)O(33)) Keggin moieties linked through an octahedral {WO(5)(H(2)O)} fragment and two unprecedented square-pyramidal {TiO(4)(OH)} groups, leading to a sandwich-type structure with nominal C(2v) symmetry. Synthesis of 1 was accomplished by reaction of TiOSO(4) and K(14)[As(2)W(19)O(67)(H(2)O)] in a 2:1 molar ratio in aqueous, acidic medium (pH 2). Polyanion 1 could also be isolated as a tetra-n-butyl ammonium (TBA) salt, {(n-C(4)H(9))(4)N}(5)H(3)[Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)] (TBA-1). TBA-1 was studied by cyclic voltammetry in acetonitrile (MeCN) solutions containing 0.1 M LiClO(4) and compared with the results obtained with Cs-1 in aqueous media. In MeCN, the Ti(IV) and W(VI) waves could not be separated distinctly. An important adsorption phenomenon on the glassy carbon working electrode was encountered both in cyclic voltammetry and in controlled potential electrolysis and was confirmed by Electrochemical Quartz Crystal Microbalance (EQCM) studies on a carbon film. TBA-1, dissolved in MeCN, reacts with H(2)O(2) to give peroxo complexes stable enough for characterization by UV-visible spectroscopy, cyclic voltammetry, and EQCM. TBA-1 shows high catalytic activity (TOF=11.3 h(-1)) in cyclohexene oxidation with aqueous H(2)O(2) producing products typical of a heterolytic oxidation mechanism. The stability of TBA-1 under turnover conditions was confirmed by using IR, UV-visible spectroscopy as well as cyclic voltammetry.  相似文献   

12.
The reaction of o-bromobenzoate (1 b) with benzaldehyde (2 a) in the presence of [NiBr(2)(dppe)] (dppe=1,2-bis(diphenylphosphino)ethane) and zinc powder in THF (24 hours, reflux temperature), afforded 3-phenyl-3H-isobenzofuran-1-one (3 a) in an 86 % yield. Similarly, o-iodobenzoate reacts with 2 a to give 3 a, but in a lower yield (50 %). A series of substituted aromatic and aliphatic aldehydes (2 b, 4-MeC(6)H(4)CHO; 2 c, 4-MeOC(6)H(4)CHO; 2 d, 3-MeOC(6)H(4)CHO; 2 e, 2-MeOC(6)H(4)CHO; 2 f, 4-CNC(6)H(4)CHO; 2 g, 4-(Me)(3)CC(6)H(4)CHO; 2 h, 4-C(6)H(5)C(6)H(4)CHO; 2 i, 4-ClC(6)H(4)CHO; 2 j, 4-CF(3)C(6)H(4)CHO; 2 k, CH(3)(CH(2))(5)CHO; 2 l, CH(3)(CH(2))(2)CHO) also underwent cyclization with o-bromobenzoate (1 b) producing the corresponding phthalide derivatives in moderate to excellent yields and with high chemoselectivity. Like 1 b, methyl 2-bromo-4,5-dimethoxybenzoate (1 c) reacts with tolualdehyde (2 b) to give the corresponding substituted phthalide 3 m in a 71 % yield. The methodology can be further applied to the synthesis of six-membered lactones. The reaction of methyl 2-(2-bromophenyl)acetate (1 d) with benzaldehyde under similar reaction conditions afforded six-membered lactone 3 o in a 68 % yield. A possible catalytic mechanism for this cyclization is also proposed.  相似文献   

13.
Treatment of the ruthenabenzene [Ru{CHC(PPh(3))CHC(PPh(3))CH}Cl(2)(PPh(3))(2)]Cl (1) with excess 8-hydroxyquinoline in the presence of CH(3)COONa under air atmosphere produced the S(N)Ar product [(C(9) H(6)NO)Ru{CHC(PPh(3))CHC(PPh(3))C}(C(9)H(6)NO)(PPh(3))]Cl(2) (3). Ruthenabenzene 3 could be stable in the solution of weak alkali or weak acid. However, reaction of 3 with NaOH afforded a 7:1 mixture of ruthenabenzenes [(C(9)H(6)NO)Ru{CHC(PPh(3))CHCHC}(C(9)H(6)NO)(PPh(3))]Cl (4) and [(C(9)H(6)NO)Ru{CHCHCHC(PPh(3))C}(C(9)H(6)NO)(PPh(3))]Cl (5), presumably involving a P-C bond cleavage of the metallacycle. Complex 3 was also reactive to HCl, which results in a transformation of 3 to ruthenabenzene [Ru{CHC(PPh(3))CHC(PPh(3))C}Cl(2)(C(9)H(6)NO)(PPh(3))]Cl (6) in high yield. Thermal stability tests showed that ruthenabenzenes 4, 5, and 6 have remarkable thermal stability both in solid state and in solution under air atmosphere. Ruthenabenzenes 4 and 5 were found to be fluorescent in common solvents and have spectral behaviors comparable to those organic multicyclic compounds containing large π-extended systems.  相似文献   

14.
The complexes [Pt(bipy){CC-(4-pyridyl)}(2)] (1) and [Pt(tBu(2)bipy){CC-(4-pyridyl)}(2)] (2) and [Pt(tBu(2)-bipy)(CC-phen)(2)] (3) all contain a Pt(bipy)(diacetylide) core with pendant 4-pyridyl (1 and 2) or phenanthroline (3) units which can be coordinated to {Ln(diketonate)(3)} fragments (Ln = a lanthanide) to make covalently-linked Pt(II)/Ln(III) polynuclear assemblies in which the Pt(II) chromophore, absorbing in the visible region, can be used to sensitise near-infrared luminescence from the Ln(III) centres. For 1 and 2 one-dimensional coordination polymers [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) are formed, whereas 3 forms trinuclear adducts [3{Ln(hfac)(3)}(2)] (tta=anion of thenoyl-trifluoroacetone; hfac=anion of hexafluoroacetylacetone). Complexes 1-3 show typical Pt(II)-based (3)MLCT luminescence in solution at approximately 510 nm, but in the coordination polymers [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) the presence of stacked pairs of Pt(II) units with short PtPt distances means that the chromophores have (3)MMLCT character and emit at lower energy ( approximately 630 nm). Photophysical studies in solution and in the solid state show that the (3)MMLCT luminescence in [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) in the solid state, and the (3)MLCT emission of [3{Ln(hfac)(3)}(2)] in solution and the solid state, is quenched by Pt-->Ln energy transfer when the lanthanide has low-energy f-f excited states which can act as energy acceptors (Ln=Yb, Nd, Er, Pr). This results in sensitised near-infrared luminescence from the Ln(III) units. The extent of quenching of the Pt(II)-based emission, and the Pt-->Ln energy-transfer rates, can vary over a wide range according to how effective each Ln(III) ion is at acting as an energy acceptor, with Yb(III) usually providing the least quenching (slowest Pt-->Ln energy transfer) and either Nd(III) or Er(III) providing the most (fastest Pt-->Ln energy transfer) according to which one has the best overlap of its f-f absorption manifold with the Pt(II)-based luminescence.  相似文献   

15.
Iodinations of the ortho, meta, and para fluorous arenes (R(f8)CH(2)CH(2)CH(2))(2)C(6)H(4) (R(f8)=(CF(2))(7)CF(3)) with I(2)/H(5)IO(6) in AcOH/H(2)SO(4)/H(2)O give 3,4-(R(f8)CH(2)CH(2)CH(2))(2)C(6)H(3)I (5) and the analogous 2,4- (6) and 2,5- (7) isomers, respectively. Spectroscopic yields are >90 %, but 5 and 7 must be separated by chromatography from by-products (yields isolated: 70 %, 97 %, 61 %). Reaction of 1,3,5-(R(f8)CH(2)CH(2)CH(2))(3)C(6)H(3) with PhI(OAc)(2)/I(2) gives 2,4,6-(R(f8)CH(2)CH(2)CH(2))(3)C(6)H(2)I (8) on multigram scales in 97 % yield. The CF(3)C(6)F(11)/toluene partition coefficients of 5-8 (24 degrees C: 69.5:30.5 (5), 74.7:25.3 (6), 73.9:26.1 (7), 98.0:2.0 (8)) are lower than those of the precursors, but CF(3)C(6)F(11)/MeOH gives higher values (97.0:3.0 (5), 98.6:1.4 (6), 98.0:2.0 (7), >99.3:<0.3 (8)). Reactions of 5-8 with excess NaBO(3) in AcOH yield the corresponding ArI(OAc)(2) species 9-12 (9, 85 % as a 90:10 9/5 mixture; 10, 97 %; 11, 95 %; 12, 93 % as a 95:5 12/8 mixture). These rapidly oxidize 1,4-hydroquinones in MeOH. Subsequent additions of CF(3)C(6)F(11) give liquid biphase systems. Solvent removal from the CF(3)C(6)F(11) phases gives 5-8 in >99-98 % yields, and solvent removal from the MeOH phases gives the quinone products, normally in >99-95 % yields. The recovered compounds 5-8 are easily reoxidized to 9-12 and used again.  相似文献   

16.
The assembly of Co(NCS)(2) with 1-methyl-1'-(3-pyridyl)-2-(4-pyridyl)ethene (L(1)) exhibits a novel supramolecular isomerism of [Co(L(1))(2)(NCS)(2)](infinity) caused by different placement orientation of L(1) around metal centers. The reaction in MeOH/H(2)O and EtOH/H(2)O resulted in a double chain structure of 1, and that in EtOH/CH(3)NO(2) led to an open framework structure of 2. The reaction in MeOH/CH(3)NO(2) solvent system concomitantly afforded 1 and 2. The assemblies of 1-(3-pyridyl)-2-(4-pyrimidyl)ethene (L(2)) with Co(NCS)(2) created the water-coordinated complexes of Co(L(2))(2)(H(2)O)(2)(NCS)(2) (3 and 4), an MeOH coordinated complex of Co(L(2))(2)(H(2)O)(2)(NCS)(2) (5), and an open framework coordination polymer of [Co(L(1))(2)(NCS)(2)](infinity) (6) depending on the reaction solvent system. From these observations, it is suggested that in the formation of 1, the solvent-coordinated intermediate species would be generated first and its trans coordination configuration should define the placement orientation of L(1) in the resulting polymer of 1. On the other hand, it is presumed that the solvent-coordinated intermediate would not be produced during the formation of 2 due to the weaker coordination ability of EtOH and CH(3)NO(2) molecules. The open framework coordination polymers of 2 and 6 are converted in the solid state into the isomeric coordination polymer of 1 and hydrogen bonded network structure of 3, respectively.  相似文献   

17.
Phosphorus is one of the predominant impurities in the Hall-Heroult process for industrial aluminium production. The nature of the dissolved phosphorus species in the Na(3)AlF(6)-AlPO(4) system has been investigated by in situ high-temperature (HT) (19)F, (23)Na, (27)Al, (17)O, and (31)P NMR. The combination of these experiments enables to define the presence of PO(4)(3-), AlF(5)(2-) and (AlF(4)-O-PO(3))(4-) anions in the melt, and then the formation of Al-O-P bonding. Melts solidified at different cooling rates were characterised using various solid-state NMR techniques including multiple quantum magic angle spinning (MQMAS), rotational echo double resonance (REDOR) and heteronuclear single quantum correlation (HSQC). The glass obtained by the rapid quenching of the hypereutectic melt has been carefully described in order to better understand the structure of the melt.  相似文献   

18.
A C-O-bond cleavage of esters having a naphthyl group, NpCO-OR and RCO-ONp (Np=alpha- and beta-naphthyl ((alpha)Np and (beta)Np, respectively), R=Ph and Me), was found during the two-color two-laser flash photolysis in acetonitrile. The C-O-bond cleavage occurred when NpCO-OR and RCO-ONp were excited to the singlet excited states (S1). On the other hand, no reaction occurred from the lowest triplet excited states (T1). When NpCO-OR(T1) and RCO-ONp(T1) were excited to the higher triplet excited states (Tn) using the second laser during the two-color two-laser flash photolysis, the C-O-bond cleavage occurred. The C-O-bond cleavage quantum yield (Phi) was estimated from the plots of the T1-state esters disappeared within a laser flash versus the second laser intensities. The C-O-bond cleavage in (beta)NpCO-OPh(Tn) occurred more efficiently than in (alpha)NpCO-OPh(Tn) and that in PhCO-O(beta)Np(Tn) occurred more efficiently than in PhCO-O(alpha)Np(Tn). The Phi value for ester with Ph and beta-Np groups was larger than that for ester with Ph and alpha-Np groups. The Phi value for MeCO-O(alpha)Np(Tn) was similar to those for PhCO-ONp(Tn), while that for MeCO-O(beta)Np(Tn) was much smaller than those for PhCO-ONp(Tn) and MeCO-O(alpha)Np(Tn). On the other hand, no C-O-bond cleavage was observed in NpCO-OMe(Tn). The Phi value depended on the characters of the groups (Np, Ph, and Me) on the ester. Whether R is Ph or Me with or without pi electron, respectively, is important for the C-O-bond cleavage. In other words, electronic delocalization of the T(n) state including Np and ester groups is necessary for the occurrence of the C-O-bond cleavage in NpCO-OR(Tn) and RCO-ONp(Tn).  相似文献   

19.
The complete analysis of the complex (1)H NMR spectra of some monosubstituted cyclobutanes was achieved to give all the (1)H chemical shifts and (n)J(HH) (n = 2, 3 and 4) coupling constants in these molecules. The substituent chemical shifts of the substituents in the cyclobutane ring differ significantly from those in acyclic systems. For example, the OH and the NH(2) groups in cyclobutanol and cyclobutylamine produce a large shielding of the hydrogens of the opposite CH(2) group of the ring compared with little effect on the comparable methylene protons of butane. These effects and the other (1)H shifts in the cyclobutanes were modelled successfully in the CHARGE program. The RMS error (calculated vs observed shifts) for the 34 (1)H shifts recorded was 0.053 ppm. The conformational equilibrium in these compounds between the axial and the equatorial conformers was obtained by comparing the observed and the calculated (4)J(HH) couplings. These couplings in cyclobutanes, in contrast to the corresponding (3)J(HH) couplings, show a pronounced orientation dependence; (4)J(eq-eq) is ca 5 Hz and (4)J(ax-ax) ca 0 Hz. The couplings in the individual conformers were calculated at the B3LYP/EPR-III level. The conformer energy differences ΔG(ax-eq) vary from 1.1 kcal mol(-1) for OH to 0.2 kcal mol(-1) for the CH(2)OH substituent. The values of the conformer energy differences are compared with the previous IR data and the corresponding theoretical values from molecular mechanics (MM) and DFT theory. Generally, good agreement is observed although both the MM and the DFT calculations deviate significantly from the observed values for some substituents.  相似文献   

20.
Highly water soluble fluorescent dyes were synthesized and transformed into new amino reactive fluorescent labels for biological microscopy. To this end, rhodamine 8 (prepared from 7-hydroxy-1,2,3,4-tetrahydroquinoline (7) and phthalic anhydride in 85 % aq. H(3)PO(4)) was sulfonated with 30 % SO(3) in H(2)SO(4) and afforded the water soluble disulfonic acid 3 a (64 %). Amidation of the carboxy group in 3 a with 2-(methylamino)ethanol in the presence of O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumPF(6) (-) (HATU) led to alcohol 3 b (66 %), which was transformed into the amino reactive mixed carbonate 3 d with di(N-succinimidyl)carbonate and Et(3)N. Reaction of the carboxy group in 3 a with MeNH(CH(2))(2)CO(2)Me and N,N,N',N'-tetramethyl-O-(N-succinimidyl)-uroniumBF(4) (-) (TSTU) yielded methyl ester 13. After saponification of the aliphatic carboxy group in 13, the compound was converted into NHS-ester 3 e (using HATU and Et(3)N). Heating of 7 with trimellitic anhydride in H(3)PO(4) gave a mixture of dicarboxylic acids 14 and 15 (1:1). Regioisomer 15 was isolated, sulfonated with 30 % SO(3) in H(2)SO(4), and disulfonic acid 3 f was used for the synthesis of the mono NHS-ester 3 g, in which the sterically unhindered carboxy group was selectively activated (with N-hydroxysuccinimide, HATU, and Et(3)N). The sulfonated rhodamines 3 b, c and f are soluble in water (up to 0.1 M), have excellent photostabilities and large fluorescence quantum yields. Subdiffraction resolution images of tubulin filaments of mammalian cells stained with these dyes illustrate their applicability as labels for stimulated emission depletion microscopy and other fluorescence techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号