共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, the relationships between the optical spectra and local lattice structure for Mn5+ in a Sr10(VO4)6F2 crystal are established by the crystal- and ligand-field theory. The effect of spin–orbital coupling between the central 3d2 ions and ligand ions has been considered in the full energy matrix. Using the matrix and superposition model formula, we have calculated the optical spectra and local lattice structure parameters of Mn5+ in Sr10(VO4)6F2 with a C3v system. The calculated results are in good agreement with the observed values. In addition, the trigonal compressed distortions of the (MnO4)3? centers in Sr10(VO4)6F2 crystals are also obtained from the calculations. 相似文献
2.
The optical spectra of Cu2+ in dioptase are calculated using crystal-field theory. Good agreement between measured and calculated energy values is obtained under D 4h point-symmetry approximation. The electron paramagnetic resonance g factors, g // and g ⊥, are also investigated from high-order perturbation formulae. The local structure of Cu2+ in dioptase is obtained using these formulae. Theoretical results are in perfect agreement with experimental findings. 相似文献
3.
4.
5.
The spin Hamiltonian parameters (SHPs) and the local structures for impurity W5+ in the Zn3(PO4)2ZnO nanopowders doped with WO3 under different concentrations are theoretically investigated using the perturbation calculations of these parameters. The exponential functions of the related quantities (cubic field parameter Dq, covalency factor N, relative tetragonal compression ratio τ and core polarisation constant κ) of concentration x with totally four adjustable coefficients a, b, c and d are adopted to fit the concentration dependences of the experimental d-d transition bands and SHPs. The impurity W5+ centres demonstrate moderate tetragonal compression ratios τ (~3.1%) due to the Jahn–Teller effect. With the increase of WO3 concentration, Dq and N show moderately decreasing rules, while τ and κ exhibit slightly and moderately increasing tendencies with x, respectively. The mechanisms of the above concentration dependences of these quantities are analysed from the modifications of the local crystal-field strength and electron cloud density around the impurity W5+ with the variation of x. Present theoretical studies would be useful to the exploration of the structural properties and optical applications for WO3 doped Zn3(PO4)2ZnO nanopowders. 相似文献
6.
Yumashev K. V. Posnov N. N. Prokoshin P. V. Kalashnikov V. L. Mejid F. Poloyko I.G. Mikhailov V. P. Kozich V. P. 《Optical and Quantum Electronics》2000,32(1):43-48
The nonlinear refractive index n2 of Yb3+:KY(WO4)2 crystal has been measured using picosecond Z-scan technique. The magnitude of n2 was found to be 8.7 × 10–16 cm2/W at wavelength of 1.08 m. The numerical modeling based on fluctuation model showed a great potential of this crystal as active medium for Kerr-lens mode-locking. 相似文献
7.
The spin-Hamiltonian (SH) parameters (g factors g //, g ⊥ and hyperfine structure constants A //, A ⊥) for Co2+ ions at the trigonal Mg2+ (I) and Mg2+ (II) sites of RbMgF3 crystal are calculated from the second-order perturbation formulas based on the cluster approach for 3d7 ions in trigonal symmetry. From the calculations, it is found that the calculated SH parameters for Co2+ ion at the Mg2+ (I) site are in poor agreement with, but those for Co2+ at the Mg2+ (II) site are close to, the experimental values. Therefore, we suggest that Co2+ in RbMgF3 crystal substitutes for Mg2+ (II) ion. The results are discussed. 相似文献
8.
A theoretical method for investigating the inter-relation between the EPR parameters and local structure has been established on the basis of the complete energy matrices for 3d3 configuration ions in both the trigonal and tetragonal ligand fields. By means of this method, the local structure of the octahedral Cr3+ centres in double molybdates series and spinels series as well as the perovskite-type fluorides series has been studied systematically. Furthermore, the dependence of the EPR zero-field splitting parameter D on the local structure parameters in both trigonal and tetragonal ligand-fields has been revealed, simultaneously. The inter-relation between the EPR parameters D and Δg(g // ??g ⊥) is also elucidated. 相似文献
9.
Chang-Chun Ding Shao-Yi Wu Qing-Sheng Zhu Guo-Liang Li Zhi-Hong Zhang Yong-Qiang Xu 《Molecular physics》2013,111(12):1478-1484
The local lattice distortions and the electron paramagnetic resonance (EPR) parameters (g factors, hyperfine structure constants and zero-field splittings) for Cu2+, Mn2+ and Fe3+ in ZnWO4 are theoretically studied based on the perturbation calculations for rhombically elongated octahedral 3d9 and 3d5 complexes. The impurity centres on Zn2+ sites undergo the local elongations of 0.01, 0.002 and 0.013 Å along the C2 axis and the planar bond angle variations of 8.1°, 8.0° and 8.6° for Cu2+, Mn2+ and Fe3+, respectively, due to the Jahn–Teller effect and size and charge mismatch. In contrast to the host Zn2+ site with obvious axial elongation (~0.31 Å) and perpendicular (angular) rhombic distortion, all the impurity centres demonstrate more regular octahedral due to the above local lattice distortions. The copper centre exhibits significant Jahn–Teller reductions for the spin-orbit coupling and orbital angular momentum interactions, characterised by the Jahn–Teller reduction factor J (≈0.29 ? 1). The calculated EPR parameters agree well with the experimental results. The local structures of the impurity centres are analysed in view of the corresponding lattice distortions. 相似文献
10.
The complete diagonalisation (of energy matrix) method is applied in this paper to calculate together the optical and electron paramagnetic resonance (EPR) spectral data for Cr3+ ion at the trigonal Ga3+ site of Y3Ga5O12 crystal. The method is founded on the two-spin-orbit-parameter model where in addition to the contributions from the spin-orbit parameter of central dn ion (i.e., one-spin-orbit-parameter model) in the traditional crystal field theory, those from the spin-orbit parameter of ligand ion via covalence effect is also considered. The calculated results propose that by using only four adjustable parameters, the 12 observed spectral data (nine optical band positions and three EPR parameters g//, g⊥ and D) in Y3Ga5O12: Cr3+ are reasonably explained. The impurity-induced local lattice distortion of Cr3+ in Y3Ga5O12 crystal is also estimated through the calculations. The results are discussed. 相似文献
11.
Zheng Wen-Chen 《辐射效应与固体损伤》2013,168(1-2):169-178
Abstract The tetragonal distortions of local octahedral environments of Cr3+, Fe3+ and Gd3+ ions in Rb2CdF4, Cs2CdF4, RbCdF3 and CsCdF3 crystals have been studied by analyzing their EPR spectra. From the studies, it is found that the tetragonal distortions for Cr3+ and Fe3+ impurity ions, which substitute Cd2+ and have nearly the same ionic radius, are close to each other, whereas that for Gd3+ impurity ion, having a larger ionic radius, is larger than those for Cr3+ and Fe3+ ions in the same crystal. It appears that not only the impurity-ligand distance, but also the tetragonal distortions of impurity centres in crystals are closely related to the size of impurity. 相似文献
12.
Guojian Wang Zhoubin Lin Lizhen Zhang Yisheng Huang Guofu Wang 《Journal of luminescence》2009,129(11):1398-1400
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A2→4T1 and 4A2→4T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium. 相似文献
13.
B.R. Jovanić M. Bettinelli F. Piccinelli B. Radenković M. Despotović-Zrakić Z. Bogdanović 《辐射效应与固体损伤》2013,168(7-8):574-583
This study considers the effects of hydrostatic pressure on the line position and fluorescence lifetime τ for 5D0 → 7F2 transitions in GdVO4: Eu3+ nanocrystals. The results indicate that the pressure induced the red shift toward longer wavelengths for all the considered lines with different rate. The fluorescence lifetime τ nonlinearly decreases with pressure in the considered pressure range. High pressure induced the fluorescence lifetime τ that can be explained with a simple theoretical model. The measured line position and τ are in a satisfactory agreement with the theoretical calculations. 相似文献
14.
Electron spectra of optical absorption and EPR of Cr3+ ions in a LaBeAl11O19 crystal are investigated. It is shown that the Cr3+ ions occupy, three different octahedral positions of Al3+ in the LaBeAl11O19 structure, namely, 12k, 2a, and 4f2; the ratio of their intensitites is 1∶2∶30, respectively. Parameters of the Cr3+ centers are determined and its is shown that the optical absorption spectra in the visible region are practically determined
by the Cr3+ (III) occupying the 4f2-positions.
Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 2, pp. 275–277, March–April, 1999. 相似文献
15.
The optical absorption spectra (d-d transition bands) and covalent effect of Ni2+ ions in octahedral sites of Ca3Sc2Ge3O12 crystal have been investigated by the full energy matrix based on the two spin–orbit coupling parameters model. The bond length of octahedral site is Ri?=?2.19 Å, which can be determined by the cubic crystal-field parameter and optical spectral data. The lattice distortion of the Ni2+ center in Ca3Sc2Ge3O12 crystal is also obtained from the calculations. In addition, the result has shown that the covalent effect of Ni2+ ion in the octahedral site of Ga3Sc2Ge3O12 is obvious and cannot be ignored. The calculated d-d transition bands agree well with that of the experimental findings, suggesting that the present methods can explain reasonably the optical spectral data and covalent effect of 3d8 ions in octahedral lattices. 相似文献
16.
Yb3+:KGd(WO4)2材料的频率上转换发光 总被引:3,自引:0,他引:3
采用固相合成法 ,在 10 0 0℃烧结合成了一系列掺有Yb3 摩尔分数分别为x =0 0 3,0 0 8,0 10 ,0 12 ,0 15 ,0 18,0 2 0 ,0 2 5 ,0 2 8的KYbxGd( 1 -x) (WO4 ) 2 粉末样品。采用 980nm波长的LD泵浦源和RF 5 4 0荧光光谱仪 ,对这一系列掺有不同Yb3 摩尔分数的KYbxGd( 1 -x) (WO4 ) 2 粉末样品进行了荧光光谱的测定研究。结果表明 ,在 10 2 0nm处得到一个较弱的荧光峰 ,而在 4 76nm处得到很强的蓝色发光谱带。同时测定了蓝色发光强度与样品掺杂Yb3 摩尔分数的关系 ,随着Yb3 掺杂摩尔分数的增加 ,蓝色发光强度也随着迅速地增强 ,当Yb摩尔分数为 2 5 %时 ,荧光强度达到最大 ,然后 ,随着Yb掺杂摩尔分数的增加 ,蓝色发光强度也随着迅速地衰弱。当Yb掺杂摩尔分数为 8%~ 10 % ,10 2 0nm处的荧光强度达到最大。 相似文献
17.
18.
测量了Tm3+离子不同浓度(0.5at.%, 3 at.%, 5 at.%)掺杂的NaY(WO4)2晶体在800nm激光二极管激发下的上转换发射光谱.结合吸收谱、荧光谱和由Judd-Ofelt理论计算的光谱参数,详细分析了Tm3+:NaY(WO4)2晶体中上转换能量传递机理和离子浓度对上转换发射的影响.讨论了四种影响上转换发光效率的离子间相互作用机理:3H5+1G4→3H6+1D2,3H5+3H5→3H6+3F3,1G4+3H6→3F4+3F3,1G4+3H6→3F3+3F4,并根据Miyakawa-Dexter理论定量计算了各过程的发生概率.论证了交叉弛豫和共协上转换等浓度猝灭效应是影响Tm3+离子蓝色上转换荧光发射效率的主要因素.
关键词:
3+离子')" href="#">Tm3+离子
4)2晶体')" href="#">NaY(WO4)2晶体
上转换
浓度猝灭 相似文献
19.
A.D. ProkhorovA.A. Prokhorov L.F. ChernyshV.P. Dyakonov H. Szymczak 《Journal of magnetism and magnetic materials》2011,323(11):1546-1550
The ground state of Gd3+ ions substituting for trivalent europium in the EuAl3(BO3)4 single crystal was studied by electron paramagnetic resonance (EPR) over the temperature range of 300-4.2 K and at pressures up to 9 kbar. The EPR spectra were analysed using the spin Hamiltonian of axial symmetry. The following parameters are reported: g=1.981±0.002, b20=280.18±0.12, b40=−12.95±0.08 and b60=0.61±0.12 (at Т=298 K). The distortions of the nearest environment of Gd3+ ion were analysed within the framework of the superposition model of crystal field. 相似文献
20.
Mu Zhou Ding Xiang Cao Ming Zhe Wang Xiao Feng Wang Yi Ming Luo 《Optics Communications》2009,282(20):4109-4113
The average fluorescence wavelength of the laser crystal is the most important factor in the radiation-balanced laser (RBL). Polarized fluorescence spectra measurements of the anisotropic laser material ytterbium-doped potassium gadolinium tungstate, Yb3+:KGd(WO4)2, are carried out along principal refractive index directions m, p, g in three configurations in order to achieve the best design for RBL. The average fluorescence wavelength of g polarization is the shortest, so g should be in the face of fluorescence emission; m polarization should be normal to that face to avoid its strong absorption to fluorescence photons. Fluorescence re-absorption causes the average fluorescence wavelength of the directly measured spectra red-shifted at least 9 nm. Methods for depressing radiation trapping are suggested accordingly, which are high power pumping, low doping concentration, small dimensions and fusing with undoped KGd(WO4)2. 相似文献