首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of VIS laser ablation of graphite, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation gives an emission mass spectrum attributable to Cn neutral and charged particles. Mass quadrupole spectroscopy, associated to electrostatic ion deflection, allows estimation of the velocity distributions of several of these emitting species within the plume as a function of the incident laser fluence. Time gated plume imaging and microscopy measurements have been used to study the plasma composition and the deposition of thin carbon films. The multi-component structure of the plume emission is rationalized in terms of charge state, ions temperature and neutrals temperature. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated in the non-equilibrium plasma conditions. The use of nanosecond laser pulses, at fluences below 10 J/cm2, produces interesting C-atomic emission effects, as a high ablation yield, a high fractional ionization of the plasma and presence of nanostructures deposited on near substrates.  相似文献   

2.

A gold target has been irradiated with a Q-switched Nd:Yag laser having 1064\,\hbox{nm} wavelength, 9\,\hbox{ns} pulse width, 900\,\hbox{mJ} maximum pulse energy and a maximum power density of the order of 10^{10}\,\hbox{W}/\hbox{cm}^2 . The laser-target interaction produces a strong gold etching with a production of a plasma in front of the target. The plasma contains neutrals and ions having high charge state. Time-of-flight measurements are presented for the analysis of the ion production and ion velocity. A cylindrical electrostatic deflection ion analyzer permits to measure the yield of the emitted ions, their charge state and their ion energy distribution. Measurements indicate that the ion charge state reaches 6^+ and 10^+ at a laser fluence of 100\,\rm{J/cm}^2 and 160\,\rm{J/cm}^2 , respectively. The maximum ion energy reaches about 2\,\hbox{keV} and 8\,\hbox{keV} at these low and at high laser fluence, respectively. Experimental ion energy distributions are given as a function of the ion charge state. Obtained results indicate that electrical fields, produced in the plume, along the normal to the plane of the target surface, exist in the unstable plasma. The electrical fields induce ion acceleration away from the target with a final velocity dependent on the ion charge state. The ion velocity distributions follow a "shifted Maxwellian distribution", which the authors have corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

3.
A study of Ti laser irradiation and thin film deposition produced by an Nd:Yag pulsed laser is presented. The laser pulse, 9?ns width, has a power density of the order of 1010?W/cm2. The titanium etching rate is of the order of 1?µg/pulse, it increases with the laser fluence and shows a threshold value at about 30?J/cm2 laser fluence. The angular distribution of ejected atoms (neutrals and ions) is peaked along the normal of the target surface. At high fluence, the fractional ionization of the plasma produced by the laser is of the order of 10%. Time-of-flight measurements demonstrate that the titanium ions, at high laser fluence, may reach kinetic energies of about 1?keV. Obtained results can be employed to produce energetic titanium ions, to produce coverage of thin films of titanium and to realize high adherent titanium-substrate interfaces. The obtained results can be employed to produce energetic titanium ions, to produce a coverage of thin titanium films on polymers, and to realize highly adherent titanium–substrate interfaces.  相似文献   

4.
Energetic ions have been obtained irradiating a tungsten target with a Q-switched Nd:Yag laser, 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and power density of the order of 1010?W/cm2. The laser-target interaction induces a strong metal etching with production of plasma in front of the target. The plasma contains neutrals and ions with high charge state. Time-of-flight measurements are presented for qualitative analysis of the ion production. A cylindrical electrostatic ion analyzer permits measuring of the yield of emitted ions, the charge state of detected ions and the ion energy distribution. Measurements indicate that, at a laser fluence of the order of 100?J/cm2, the charge state may reach 9+ and the ion energy reaches about 5?keV. The ion energy distribution is given as a function of the charge state. Experimental results indicate that an electrical field is developed along the normal to the plane of the target surface, which accelerates the ions up to high velocity. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the author has corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

5.
Excimer laser ablation of superconductive borocarbide material (YNi2B2C) in typical conditions for the deposition of superconductive thin films has been investigated using time-of-flight mass spectrometry. The mass spectra show the presence of all the target elemental ionized atoms as well as diatomics. The ablation yield of the metal ions is a strongly increasing function of the laser fluence, while the contrary is true for non-metal ions. The dependence of non-metal light mass diatomic ions on laser fluence indicates the presence of aggregation processes as the laser fluence is increased. Moreover, evidence of aggregation processes involving metallic ions at high laser fluence is also obtained by the mass spectra. An interesting aspect of our results is the observation of an ion spatial distribution characterized by the presence of the lighter species at the plume edges, while the heavier ones are concentrated at the plume center.  相似文献   

6.
We report on Time-of-Flight Mass Spectrometry (TOFMS) analysis of plasmas produced in laser ablation of Al targets. We used both the second (532 nm) and third (355 nm) harmonic of a Nd: YAG laser system, carrying out the investigation in a regime of relatively high laser fluence (up to 70 J/cm2), where the production of ionized species in the plume is maximized. We present TOF mass spectra of ions in the laser-produced plasma, and a detailed analysis of the relative abundance of different charged species as a function of the laser fluence. The presence of single, doubly and triply ionized Al atoms has been observed and the fluence threshold for their production is reported. We also studied the total ion and electron yield at different laser fluences, its saturation above specific energy densities, and singly ionized cluster-ions produced in the laser plasma.  相似文献   

7.
A Nd–YAG laser operating at 532 nm with a maximum intensity of 1010 W/cm2 was used to ablate aluminium and tantalum targets placed in vacuum.

A mass quadrupole spectrometer (MQS) at high sensitivity, operating in the range of 1–300 amu, with a resolution better than 1 amu, was used to analyse the atomic emission produced by the laser ablation. The neutrals' emission produced by laser-generated plasma at INFN-LNS was investigated in terms of temperature, ablation yield, angular distribution and velocity.

The neutrals' detection through the MQS permitted to measure the mass energy distribution. Results demonstrate that the maximum temperatures of the neutral species are of the order of 100 eV. The angular emission of neutrals is peaked along the normal to the target surface, as it was observed for the ions; the ablation yield increases suddenly at low laser intensity and decreases at high laser intensity, owing to the higher ionization processes; the flow velocity follows the adiabatic expansion of the plasma in vacuum and it is of the order of 104 m/s.

Measurements will be presented and discussed, according to the available models.  相似文献   

8.
A gold target has been irradiated with a Q-switched Nd:Yag laser having 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and a maximum power density of the order of 1010?W/cm2. The laser–target interaction produces a strong gold etching with production of a plasma in front of the target. The plasma contains neutrals and ions having a high charge state. Time-of-flight (TOF) measurements are presented for the analysis of the ion production and ion velocity. A cylindrical electrostatic deflection ion analyzer permits measurement of the yield of the emitted ions, their charge state and their ion energy distribution. Measurements indicate that the ion charge state reaches 6+ and 10+ at a laser fluence of 100?J/cm2 and 160?J/cm2, respectively. The maximum ion energy reaches about 2?keV and 8?keV at these low and high laser fluences, respectively. Experimental ion energy distributions are given as a function of the ion charge state. Obtained results indicate that electrical fields, produced in the plume, along the normal to the plane of the target surface, exist in the unstable plasma. The electrical fields induce ion acceleration away from the target with a final velocity dependent on the ion charge state. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the authors have corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

9.
A study of visible laser ablation of silicon, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation, at an intensity of the order of 1010 W/cm2, produces high non-isotropic emission of neutrals and ionic species. Mass quadrupole spectrometry, coupled to electrostatic ion deflection, allows estimation of the energy distributions of the emitted species from plasma. Neutrals show typical Boltzmann-like distributions while ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Time-of-flight measurements were also performed by using an ion collector consisting of a collimated Faraday cup placed along the normal to the target surface. Surface profiles of the craters, created by the laser radiation absorption, permitted to study the ablation threshold and ablation yields of silicon in vacuum. The plasma fractional ionization, temperature and density were evaluated by the experimental data. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated at the non-equilibrium plasma conditions. The angular distribution of the neutral and ion species is discussed.  相似文献   

10.
The problem of heating of a solid target to generate a nonequilibrium plasma by subnanosecond laser pulses is considered. For an appreciable absorption of energy from a Nd-glass laser, the critical density of the electrons in the plasma turns out to be 1021 cm−3. These electrons can be heated up to 107 K or more by using pulses of about 10 picosecond duration and absorbed energy flux of the order of 1021 erg cm−2 sec−1. Starting from neutral atoms in a solid with a high atomic number, e.g., Z=26, for times in the picosecond regime the relevant rate equations are solved analytically to predict densities of the atoms at different ionization levels. It is shown that during such a short time the population density of the ions isoelectronic to neon builds up to a very large amount. This in turn leads to the population inversion in the 4s → 3p soft x-ray laser transition, via the electron-impact excitation of the 4s level of the isoelectronic neon ion. For the effective pumping times of the order of 5 picoseconds, a gain of the order of 102 db cm−1 is predicted for the laser transition in Fe XVII, Co XVIII or Cu XX.  相似文献   

11.
-2 ). The interpretation of the ion TOF distributions in terms of theoretical shifted Maxwell–Boltzmann distributions produces a good agreement with the experimental data. This has allowed us to infer the ion flow velocity and temperature associated with the measured TOF distributions, as well as the ion kinetic energies as a function of the laser fluence. We have also studied the total ion yield at different laser fluences. Our results show that all the plume parameters investigated are increasing functions of the laser fluence until a saturation plateau is reached at high fluences (>20 Jcm-2). We ascribe this saturation behav iour to strong absorption and partial, or total, reflection of the laser light by the hot plasma produced by the leading edge of the intense laser pulse. This interpretation is supported by a semi-quantitative analysis of the laser photon absorption and ionization mechanisms in Al plasma, at both laser wavelengths. Received: 6 January 1997/Accepted: 14 March 1997  相似文献   

12.
We report here on the development of a high-temperature laser ion source useful for trace analysis and other applications. It consists of a high temperature ionization chamber, three tunable dye lasers pumped by copper vapor lasers for stepwise resonant ionization and a Mattauch-Herzog mass spectrometer for the analysis of photo-ions. The principle of the laser ion source and its theoretical efficiency are discussed, where the efficiency of a laser ion source is the ratio of photo-ions extracted out to the number of atoms introduced into the cavity. Experimentally, an efficiency of 2×10–3 has been achieved for technetium. The scheme of gated detection is described which is used for suppressing isobaric background of molybdenum. The possible improvements are briefly mentioned for achieving isotopic analysis of 108 atoms of 97,98Tc in the presence of 1015 atoms of molybdenum, as separated chemically from molybdenum ore. Such an analysis of technetium isotopes produced in molybdenite ore by a (v,e ) reaction, is expected to yield information about the solar neutrino flux.Permanent address: Bhabha Atomic Research Centre, Bombay 400085, India  相似文献   

13.
Protons production and acceleration via laser-generated plasma from thin Fe2O3 and carbon nano-tubes doped polyethylene films are investigated at relatively low laser pulse intensity, of the order of 1010 W/cm2. Time-of-flight technique is employed in order to measure the proton energy and the relative yield with respect to the carbon one. Two ion collectors are used in opposite directions to detect the proton energy and yield both in backward and forward directions, normally to the irradiated target surface, as a function of the thin target doping concentration. The comparison between the results obtained with thin films doped with two nano-particle species is presented and discussed, with a special regard to the high proton emission.  相似文献   

14.
A Nd:YAG laser with 109 W/cm 2 pulse intensity, operating at 532 nm wavelength, is used to ablate Ta and Cu targets placed in vacuum. The ablation process generates a plasma in front of the target surface, which expands along the normal to target surface. The ion and electron emissions from the plasma were measured by Faraday cups placed at different angles with respect to the normal to target surface. In the range of laser intensities from 107 to 109 W/cm2, the fast electron yield is lower than the ion yield and it increases at higher laser intensities. The ablation threshold, the emission yield, the ion and electron average energies and the plasma ion and electron temperatures were measured for ion and fast electron streams.  相似文献   

15.
Long pulse laser shots of the PALS iodine laser in Prague have been used to obtain metal target ablation at various experimental conditions. Attention is paid mainly to the dependencies of the crater diameter on the position of minimum laser-focus spot with regard to the target surface, by using different laser wavelengths and laser energies. Not only a single one, but two minima, independently of the wavelength, of the target irradiation angle and of the target material, were recorded. Significant asymmetries, ascribed to the non-linear effects of intense laser beam with pre-formed plasma, were found, too. Estimations of ejected mass per laser pulse are reported and used to calculate the efficiency of laser-driven loading. Results on metal target ablation and crater formation at high intensities (from 2 × 1013 to 3 × 1016 W/cm2) are presented and compared. Crater depth, crater diameter and etching yield are reported versus the laser energy, in order to evaluate the ablation threshold fluence.  相似文献   

16.
The sputtering yield of sulfur by 30-300 keV 4He+ at 20°C was found to be of the order of 104-106 sulfur atoms per incident 4He, dependent on the energy and total implanted fluence, and independent of the ion flux onto the target. This effect may be explained by a weakening of the van der Vaals binding between the S8 rings due to Coulomb repulsion in the homogeneously charged volume, after a sufficient charge has accumulated in the highly insolating sample. Sulfur emission continues even for some time after the beam is switched off, and emission of sulfur atoms is also observed from non-irradiated areas adjacent to the irradiated spot, even from the rear side of 2-mm thick sulfur targets.  相似文献   

17.
Proton acceleration can be induced by non-equilibrium plasma developed by high-intensity laser pulses, at 1016 W/cm2, irradiating different types of thin polyethylene targets. The process of proton acceleration and directive yield emission was investigated, optimizing the laser parameters, the irradiation conditions, and the target properties. The use of 600 J pulse energy, a laser focalization inducing self-focusing effects and advanced targets with embedded nanoparticles and optimal thicknesses, has permitted to accelerate forward protons up to the energies of about 6 MeV and amount of the order of 1015 H+/pulse. High proton energy is obtained using thin foils enriched with gold nanoparticles, whereas high proton yield is obtained using targets with a thickness of about 10 μm. The plasma diagnostics using SiC semiconductor detectors in time-of-flight configuration was fundamental to monitor the optimal conditions to improve the plasma processes concerning the ion acceleration and the X-ray and relativistic electron emission.  相似文献   

18.
We study the dynamics of ions produced upon ablation of Al and ceramic Al2O3 targets using nanosecond laser pulses at 193 nm (6.4 eV) as a function of the laser fluence from threshold up to 12 J cm−2. An electrical (Langmuir) probe located at 40 mm from the target surface has been used for determining the ion yield and calculating the kinetic energy distributions. The results for both targets show the existence of a significant amount of ions having kinetic energies >200 eV (≈20% around threshold fluence), and kinetic energies are up to >1.5 keV. The results are related with the existence of direct photonionization processes caused by the photon energy of the laser being higher than the ionization potential of Al (5.98 eV). Comparison of the ion yield when ablating the two types of targets for fluences above threshold to data reported in the literature suggests that the magnitude of the yield and its threshold are parameters depending on the thermal properties of the target rather than on the laser wavelength. Around threshold, the different behavior of ion yield when ablating Al and Al2O3 targets suggests that the threshold for neutral aluminium and ion species in the case of ablation of the Al2O3 target must be similar.  相似文献   

19.
The ionic species present in the laser ablated plume from the surface of the Bi1.6Pb0.4Sr2Ca2Cu3Oysuperconducting target have been investigated using a non-commercial laboratory developed linear time-of-flight (TOF) mass spectrometer. The recorded TOF mass spectra reveal the presence of all the atomic species of the target material, monoxide and cluster ions. The occurrence of clusters in the mass spectra is the evidence of aggregation processes at higher laser fluence. The dependence of the ionic yield of the species has been studied using the fundamental (1064 nm), second harmonic (532 nm) and fourth harmonic (266 nm) of a Nd:YAG laser. The maximum ionization of the species present in the plume is observed at 266 nm even at lower laser fluence. The effect of the laser fluence on the total and individual ionic yields of the ablated species is also presented.  相似文献   

20.
We report here an experimental study of the ionic keV X-ray line emission from magnesium plasma produced by laser pulses of three widely different pulse durations (FWHM) of 45 fs, 25 ps and 3 ns, at a constant laser fluence of ∼1.5 × 104 J cm − 2. It is observed that the X-ray yield of the resonance lines from the higher ionization states such as H- and He-like ions decreases on decreasing the laser pulse duration, even though the peak laser intensities of 3.5 × 1017 W cm − 2 for the 45 fs pulses and 6.2 × 1014 W cm − 2 for the 25 ps pulses are much higher than 5 × 1012 W cm − 2 for the 3 ns laser pulse. The results were explained in terms of the ionization equilibrium time for different ionization states in the heated plasma. The study can be useful to make optimum choice of the laser pulse duration to produce short pulse intense X-ray line emission from the plasma and to get the knowledge of the degree of ionization in the plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号