首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

We report a scanning tunnelling microscopy investigation of the emission of dislocations around nanoindentations in the form of dislocation arrangements previously called hillocks , consisting of two pairs of Shockley partial dislocations, each encompassing a stacking fault. The spatial arrangement and size distribution of hillocks around the nanoindentation traces are studied. We show that standard dislocation theory for an isotropic continuum can be used to describe the stability of the hillocks, their size and spatial distribution and the broadening of the corresponding extended dislocations near the surface. A model is proposed in which hillocks originate from the split into dislocations partials of primary perfect dislocation loops punched into the crystal by the scanning tunnelling microscope tip. This model implies the operation of a novel dislocation mechanism involving long-range transport of matter across the surface.  相似文献   

2.
The method of molecular dynamics is applied to the study of the effect of post-cascade shock waves generated in a solid irradiated by high-energy particles on the heterogeneous formation of dislocation loops in a simulated gold crystal containing a spherical nanovoid, which is subjected to shear deformation. The interaction between atoms is described with the use of a potential calculated by the embedded atom method. Shock waves are created by assigning a velocity exceeding the speed of sound in the simulated material to the boundary atoms of the computational cell. It is shown that two regions of increased mechanical stress are formed under shear deformation near the surface of a nanovoid, which are the sources of emerging partial dislocations. The main mechanism for the formation of dislocations is the displacement of a group of atoms towards the inner surface of the void, which does not contradict modern ideas about the heterogeneous formation of dislocations. It is shown that, when the values of shear stress are insufficient for the formation of dislocations, loop emission can be initiated by a post-cascade shock wave generated in the computational cell. As temperature increases, the number of nucleated dislocation loops increases, and, in addition, the formation of Lomer–Cottrell dislocations is observed, which is attributed to the additional tangential stresses created by the unloading wave. In this case, the formation of a stable dislocation loop in which the linear tension is balanced by the Peach–Koehler force due to external stress requires that the shock wave front affect the regions of increased stress near the void surface while propagating through the simulated crystal.  相似文献   

3.
The evolution of the distribution of interstitial impurity atoms in the plastic zone around the tip of a tension crack is analyzed. The transport of point defects is determined by: 1) the hydrostatic component of the elastic stress at the crack tip, created by the superposition of the elastic fields of the crack and dislocations; 2) the elastic field of moving dislocations (“sweeping out” of interstitial impurity atoms); 3) the dislocation-driven transport of point defects present in the dislocation cores. The contributions of each mechanism of transport of point defects to the crack tip are calculated over the entire time from the start of loading of a sample containing a crack until an equilibrium distribution of plastic deformation is established after the cessation of loading. Numerical calculations are carried out for interstitial hydrogen atoms dissolved in an α-Fe crystal. Fiz. Tverd. Tela (St. Petersburg) 39, 1580–1585 (September 1997)  相似文献   

4.
The square dislocation network of a (0 0 1) buried small-angle boundary in silicon was observed by dark-field transmission electron microscopy to examine the structures of more than 100 dissociated dislocation segments. Images were taken with g = (2 2 0), using a many-beam case along the reciprocal lattice row. Dissociation occurs on alternate close-packed planes without systematic rule, although a degree of ordering is taking place. Most of the dislocation segments have lengths equal to half of the square network period. Image simulation studies revealed that their experimental contrasts cannot be explained from the usual assumption of straight dislocations running in an infinite crystal. However, if these dislocations are supposed close and parallel to a nearby free surface, a reasonable agreement is found between the micrographs and the simulated images. A three-dimensional elastic model is proposed to explain the contrasts of the dislocation network.  相似文献   

5.
徐振海  袁林  单德彬  郭斌 《物理学报》2009,58(7):4835-4839
采用分子静力学方法模拟了〈100〉单晶铜纳米线的拉伸变形过程,研究了纳米线屈服的机理. 结果表明:1) 纳米线初始屈服通过部分位错随机激活的{111}〈112〉孪生实现,后继屈服通过{111}〈112〉部分位错滑移实现;2) 纳米线变形初期不同滑移面上的部分位错在两面交线处相遇形成压杆位错,变形后期部分位错在刚性边界处塞积,两者都阻碍位错滑移,引起一定的强化作用. 关键词: 纳米线 屈服 位错 分子静力学  相似文献   

6.
Yanqiu Zhang 《哲学杂志》2013,93(30):2772-2794
Abstract

Molecular dynamics simulations were conducted to elucidate dislocation mechanisms of the void growth and coalescence in single crystal and nanotwinned nickels subjected to uniaxial tension. The simulation results reveal that twin boundary is capable of decreasing the critical stress, suppressing the emission of dislocations and reducing the overall stiffness of the crystal. A size-scale dependence of critical stress is definitely illustrated through stress–strain response, where the larger void size leads to the lower critical stress and strain. It is the successive emissions of leading partials and the subsequent trailing partials that cause the atoms on the void surfaces to escape from the void surfaces continually, and consequently the voids grow to be larger and larger with increasing strain. The voids in the nanotwinned nickel coalesce earlier than those in the single crystal nickel even though the initiation of dislocations in the former is later than that in the latter. Void fraction remains a constant during elastic deformation, while it presents a linear increase with increasing strain during plastic deformation. Evolution of void fraction during void growth and coalescence is independent on void size.  相似文献   

7.

An in-situ transmission electron microscopy straining technique has been used to investigate the dynamics of dislocation-defect interactions in ion-irradiated copper and the subsequent formation of defect-free channels. Defect removal frequently required interaction with multiple dislocations, although screw dislocations were more efficient at annihilating defects than edge dislocations were. The defect pinning strength was determined from the dislocation curvature prior to breakaway and exhibited values ranging from 15 to 175 MPa. Pre-existing dislocations percolated through the defect field but did not show long-range motion, indicating that they are not responsible for creating the defect-free channels and have a limited contribution to the total plasticity. Defect-free channels were associated with the movement of many dislocations, which originated from grain boundaries or regions of high stress concentration such as at a crack tip. These experimental results are compared with atomistic simulations of the interaction of partial dislocations with defects in copper and a dispersed-barrier-hardening crystal plasticity model to correlate the observations to bulk mechanical properties.  相似文献   

8.
Abstract

Experimental value of strength of nano-sized crystal under uniform triaxial (hydrostatic) tension was obtained for the first time. Strength was measured by in situ high-field mechanical testing of tungsten defect-free nano-sized specimen carried out inside a field-ion microscope. At temperature 77 K, this strength is 28 ± 3 GPa. Based on the MD simulation findings, it is ascertained that under these conditions the instability of an entire nano-sized specimen (global instability) is initiated by the Bain transition within a local region of the specimen. The model of ‘fluctuation-induced Bain transition’ is offered. Within the framework of the model proposed, it is exhibited that possibility of realisation of such local Bain transition under global hydrostatic tension is due to the fluctuation of local tensile stresses. In general, it is shown that fluctuation-induced Bain transition governs the level of the strength of nano-sized bcc crystals under hydrostatic tension.  相似文献   

9.

The size-dependent mechanical response of a simple model microstructure is investigated using continuum dislocation-based, Cosserat and strain-gradient models of crystal plasticity. The governing equations and closed-form analytical solutions for plastic slip and lattice rotation are directly compared. The microstructure consists of a periodic succession of hard (elastic) and soft (elastoplastic single-crystal) layers, subjected to single glide perpendicular to the layers. In the dislocation-based approach, inhomogeneous plastic deformation and lattice rotation are shown to develop in the soft channels, either because of bowing of dislocations or owing to pile-up formation. The generalized continuum non-local models are found to be able to reproduce the plastic slip and lattice rotation distribution. In particular, a correspondence was found between the generalized-continuum results and line tension effects; the additional or higher- order balance equations introduced in the non-local models turn out to be the counterparts of the equilibrium equation for bowed dislocations. The relevance and possible physical interpretation of additional or higher-order interface conditions responsible for the inhomogeneous distribution of plastic slip and lattice rotations are discussed.  相似文献   

10.

Tensorial maps of misfit dislocations at the strained GaAs-ZnTe-CdTe interfacial zone are reconstructed by use of digital processing of high-resolution transmission electron micrographs. Large distortions of the crystal lattice around Lomer dislocations are measured using the geometric phase technique. The integration of the dislocation distribution tensor field over a dislocation core region gives the in-plane components of their Burgers vectors. The accuracy of the method for the dislocation map reconstruction is tested by comparing the theoretical values of the so-called true Burgers vectors with those obtained from the integration of tensorial maps.  相似文献   

11.

In the present work we investigate theoretically the influence of random electric fields on electron-hole recombination in wide bandgap crystals. Effective Onsager radius and, therefore, electron-hole recombination rate are significantly modified by external electric fields. Electric field distribution functions for point defects and charged dislocations are evaluated analytically. Electron-hole recombination rate decreases with concentration of point defects and dislocations. In simple case of random fields created by charge carriers in highly excited regions the recombination rate is proportional to n 2/3 rather than n , where n is the concentration of excitations. Therefore modification of luminescence kinetics is most pronounced at initial stages of relaxation of highly excited regions.  相似文献   

12.

We present the results of simulations using both atomistic and density functional theory (DFT) approaches that illustrate the uses of these techniques for investigating the structure and electronic structure of defects at the surfaces of oxides. Atomistic simulation studies of the low index surfaces of spinel (MgAl 2 O 4 ) will show the role of vacancy configuration and surface rearrangement. Atomistic and DFT studies on Li doped MgO illustrate the importance of both the defect structure and its effect of morphology. We will also illustrate using DFT electronic defects at the surface of CeO 2 , which are of great importance in redox reactions and catalytic activity. Finally we will present a novel atomistic approach for predicting the structure of supported oxide nanoclusters giving rise to a wide range of defects including a range of surface terminations, grain formation, mixed screw edge dislocations and misfit dislocations. We will illustrate this using the structure of a BaO supported MgO nanocluster.  相似文献   

13.
R.S. Hay 《哲学杂志》2013,93(36):4243-4270
Polycrystalline monazite (monoclinic LaPO4) was deformed by spherical indentation at room temperature. Slip systems were identified using TEM of thin sections prepared parallel and close to the indented surface. Dislocation Burgers vectors (b) were identified by Burgers circuit closure in high resolution TEM images, supplemented by diffraction contrast where possible. A total of 441 b determinations were made in 97 grains. The most common slip systems were [001]/(010), [100]/(010) and [010]/(100). Slip on (001) was less common. Many other less common slip systems and Burgers vectors were also identified, including b = [101], [101], [011], [110] and [111]. b = [101] dislocations dissociate into ½[101] partials, and b = [101] dislocations are inferred to dissociate to ½[101] partials, with a low energy stacking fault of ~30 mJ/m2. b = [100] dislocations may dissociate into ¼[210] + ¼[210] partials. b = [010] may sometimes dissociate to ½[010] + ½[010] partials. Other types of partial dislocations were also observed and discussed. All partial dislocations were climb dissociated. The line energies of monazite dislocations and their partials were calculated, and stacking fault structures for partial dislocations are analyzed. Satisfaction of the Von Mises criterion for full ductility most likely involves [101]/(111) and ?011?/{011} or {111} slip, but other combinations that require both b = [101] and ?011? or ?110? are possible. If deformation twinning is active, slip systems with b = ?011? or ?110? may not be necessary for full ductility.  相似文献   

14.
EPR is used to detect the effect of a reversible decrease of the number of stacking faults during elastic uni-axial compression of microtwin zinc-sulfide crystals. The result is explained by the behavior during deformation of the crystal of incoherent twin boundaries consisting of sloped walls formed by ensembles of partial dislocations. Fiz. Tverd. Tela (St. Petersburg) 39, 1230–1233 (July 1997)  相似文献   

15.
The size effects associated with the crystal surface as an effective sink for moving dislocations in a thin crystal and as a barrier for these dislocations in the presence of a high-strength film or a special hardened layer on the surface, which favor the accumulation of dislocations in the crystal, have been considered theoretically in terms of the kinetic equation for the density of dislocations concentrated in the crystal in the critical lengths of single-ended (unipolar) dislocation sources. The theoretical results have been illustrated by the experimental data available in the literature for microcrystals and nanocrystals of copper and aluminum. It has been found in accordance with these data that the dependence of the yield stress ??2% of the crystal on the crystal transverse size D has the form ??2% ?? D ?0.75 when there is a free crystal surface for the escape ofthe dislocations and ??2% ?? D ?0.5 when there is a high-strength layer on the lateral surface of the crystal..  相似文献   

16.
17.
The dynamic behaviour of a twin and a slip band is considered when simulated as the planar pile-ups of partial and complete dislocations, respectively, with a continuum distribution density. A similarity between solutions has been found for the equations describing the twin shrinking under the action of surface tension forces, and the slip band growth under the action of a δ-function type force. It turns out that the twin length decreases according to the law L~ (τ ? t)23, where τ is the full time of the twin shrinking. It has been also shown that within a small region directly adjacent to the twin center the dislocation density increases according to the law 1x, where x is the distance to the center. Annihilation of opposite-sign dislocations takes place in the twin center where the twin cannot be considered planar and where a two-dimensional region is formed. An attempt has been made to describe this region and its evolution in the process of the twin shrinking. The theoretical results obtained are in good agreement with the experimental data for the process of elastic twin shrinking and sound emission arising in this case.  相似文献   

18.
Dislocation combinations formed as a result of interaction between a glissileBσ,d Shockley partial dislocation with reacting undissociated forest dislocations are considered. The value of the parameters characterizing the strength <k> of the dislocation combinations, the probability βr of their formation, and the interaction intensity αr of the reacting dislocations are determined for an orientation of the [100] deformation axis of an FCC single crystal for all components of the dislocation loop. Tomsk State Architectural-Building Academy. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 3–8, May, 1997.  相似文献   

19.
A highly flexible model of water with fixed charges is used to study properties of water. The bending angle of an isolated molecule is 125 that was chosen to match the experimental dipole moment. The geometry of water in the liquid phase is made closer to that of the rigid SPC/E model by decreasing the bending angle spring constant, k Θ. The new model, called SPCE-FHΘ, is a modified version of the recently proposed SPCE-FH [J. Alejandre, G.A. Chapela, F. Bresme and J.-P. Hansen, J. Chem. Phys. 130, 174505 (2009)] to simulate ionic solutions which includes short ranged interactions on the hydrogen atoms. By increasing angle flexibility it is possible to obtain, in the liquid phase at ambient conditions, bending angles ?Θ(HOH)? ~ 109, dipole moment ?μ? ~ 2.5 D and dielectric constant ?ε? ~ 80. The dipole moment distribution at room temperature goes from 1.5 to 3.5 D due to large fluctuations in bending angle and has the same trend found in ab initio simulations of liquid water. The dipole moment profile at the interface of water varies from 1.9 D in the vapour phase to 2.5 D in the liquid region at 400 K. The SPCE-FHΘ gives dipole moment, dielectric constant, coexisting densities and surface tension along the liquid–vapour coexistence line closer to the experimental values than those obtained for the SPC/E force field.  相似文献   

20.
Contrasts of dislocations in the sub-surface region of the Si-face of a 4H-SiC wafer were observed by monochromatic synchrotron X-ray topography in grazing-incidence Bragg-case geometry. Basal-plane dislocations show very characteristic contrast depending on their Burgers vectors, running directions, and types of dislocations, whether they are screw dislocations, C-core edge dislocations, or Si-core edge dislocations. The rules for contrasts of basal-plane dislocations are summarized. It is shown that by observing those contrasts at fixed diffraction conditions, Burgers vectors of the basal-plane dislocation can be identified without performing a g?·?b analysis in some cases. Threading edge dislocations also have very characteristic contrasts depending on the angles between the projected g and their Burgers vectors. It is shown that Burgers vectors of threading edge dislocations can be determined uniquely by observing their characteristic contrasts without performing g?·?b analysis. Contrast mechanisms for these dislocations in grazing-incidence X-ray topography are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号