首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

2.
The reaction of dichloro bis cyclopentadienyl vanadium with O,O dialkyl and alkylene dithiophosphoric acids proceed in 1:2 molar ratio in refluxing benzene to yield di cyclopentadienyl vanadium bis O,O dialkyl and alkylene dithiophosphates, [Cp 2 V(S 2 P(OR) 2 ) 2 ], where R = Et, Pr i , Pr n , Bu i , Ph and [Cp 2 V (S 2 POGO) 2 ] where G = CMe 2 CMe 2 , CH 2 CEt 2 CH 2 , CH 2 CMe 2 CH 2 . These complexes are semi solids or solids soluble in common organic solvents. Elemental analysis, molecular weight determination, magnetic susceptibility, UV-vis spectrophotometer, IR, 1 H, 13 C, and 31 P NMR spectra indicate a hexa coordinated octahedral structure.  相似文献   

3.
Trialkyl imido niobium and tantalum complexes [MR(3)(NtBu)] (M = Nb, R = Me 2, CH(2)CMe(3)3, CH(2)CMe(2)Ph 4, CH(2)SiMe(3)5; M = Ta, R = Me 6, CH(2)CMe(2)Ph 7, CH(2)SiMe(3)8) have been prepared by treatment of solutions containing [MCl(3)(NtBu)py(2)] (M = Nb 1a, Ta 1b) with three equivalents of magnesium reagent. By an unexpected hydrolysis reaction of the tris-trimethylsilylmethyl imido tantalum compound 8a, a μ-oxo derivative [(Me(3)SiCH(2)O)(Me(3)SiCH(2))(3)Ta(μ-O)Ta(CH(2)SiMe(3))(2)(NtBu)] (8a) was formed and its structure was studied by X-ray diffraction methods. Reactions of trialkyl imido compounds with two equivalents of isocyanide 2,6-Me(2)C(6)H(3)NC result in the migration of two alkyl groups, leading to the formation of a series of alkyl imido bisiminoacyl derivatives [MR(NtBu){C(R)NAr}(2)] (Ar = 2,6-Me(2)C(6)H(3); M = Nb, R = Me 9, CH(2)CMe(3)10, CH(2)CMe(2)Ph 11, CH(2)SiMe(3)12, CH(2)Ph 13; M = Ta, R = CH(2)CMe(3)14, CH(2)CMe(2)Ph 15, CH(2)SiMe(3)16). All compounds were studied by IR and NMR ((1)H, (13)C and (15)N) spectroscopy.  相似文献   

4.
Coupling reactions of allenylphosphonates (OCH(2)CMe(2)CH(2)O)P(O)CH=C=CRR' [R, R' = H (1a), R = H, R' = Me (1b), R = R' = Me (1c)] with aryl iodides, iodophenol, and iodobenzoic acid in the presence of palladium(II) acetate are investigated and compared with those of phenylallenes PhCH=C=CR2 [R = H (2a), Me (2b)] and allenyl esters EtO(2)CCH=C=CR(2) [R = H (2c), Me (2d)]. While 1b and 1c couple with different stereochemical outcomes using PhI in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give phenyl-substituted 1,3-butadienes, 1a does not undergo coupling but isomerizes to the acetylene (OCH(2)CMe(2)CH(2)O)P(O)CCMe (7). In the reaction of 1c with PhI, use of K(2)CO(3) affords the butadiene (Z)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Ph)-C(Me)=CH(2) (12); in contrast, the use of Ag(2)CO(3) leads to the allene (OCH(2)CMe(2)CH(2)O)P(O)C(Ph)=C=CMe(2) (20), showing that these bases differ very significantly in their roles. The reaction of 1a with PhI or PhB(OH)2 in (t)he presence of Pd(OAc)2/CsF/DMF leads mainly to (E)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Me)Ph (21) and (OCH(2)CMe(2)CH(2)O)P(O)CH2-C(Ph)=CH(2) (22) and is thus a net 1,2-addition of Ph-H. Compound 1b reacts with iodophenol in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give a benzofuran that has a structure different from that obtained by using 1c under similar conditions. Treatment of 1a with iodophenol/Pd(OAc)(2)/CsF/DMF also gives a benzofuran whose structure is different from that obtained by using 2a under similar conditions. In the reaction with 2-iodobenzoic acid, 1a and 2c afford one type of isocoumarin, while 1b,c and 2a,b give a second type of isocoumarin. The structures of key compounds are established by X-ray crystallography. Utility of the phosphonate products in the Horner-Wadsworth-Emmons reaction is demonstrated.  相似文献   

5.
The design of a synthetic route to a class of enantiomerically pure phosphaalkene-oxazolines (PhAk-Ox) is presented. The condensation of a lithium silylphosphide and a ketone (the phospha-Peterson reaction) was used as the P=C bond-forming step. Attempted condensation of PhC(=O)Ox (Ox = CNOCH(iPr)CH(2)) and MesP(SiMe(3))Li gave the unusual heterocycle (MesP)(2)C(Ph)=CN-(S)-CH(iPr)CH(2)O (3). However, PhAk-Ox (S,E)-MesP=C(Ph)CMe(2)Ox (1?a) was successfully prepared by treating MesP(SiMe(3))Li with PhC(=O)CMe(2)Ox (52?%). To demonstrate the modularity and tunability of the phospha-Peterson synthesis several other phosphaalkene-oxazolines were prepared in an analogous manner to 1?a: TripP=C(Ph)CMe(2)Ox (1?b; Trip = 2,4,6-triisopropylphenyl), 2-iPrC(6)H(4)P=C(Ph)CMe(2)Ox (1?c), 2-tBuC(6)H(4)P=C(Ph)CMe(2)Ox (1?d), MesP=C(4-MeOC(6)H(4))CMe(2)Ox (1?e), MesP=C(Ph)C(CH(2))(4)Ox (1?f), and MesP=C(3,5-(CF(3))(2)C(6)H(3))C(CH(2))(4)Ox (1?g). To evaluate the PhAk-Ox compounds as prospective precursors to chiral phosphine polymers, monomer 1?a and styrene were subjected to radical-initiated copolymerization conditions to afford [{MesPC(Ph)(CMe(2)Ox)}(x){CH(2)CHPh}(y)](n) (9?a: x = 0.13n, y = 0.87n; GPC: M(w) = 7400?g mol(-1) , PDI = 1.15).  相似文献   

6.
New chlorophosphonates bearing a 1,3,2-dioxaphosphorinane ring which are useful for the stereospecific synthesis of 5-chlorofurfuryl substituted olefins and chloro-substituted dienes have been obtained by an easy, inexpensive route. The utility of some of these in the synthesis of ferrocenyl- and anthracenyl-substituted unsymmetrical acetylenes has been explored. The structures of the phosphonates (OCH(2)CMe(2)CH(2)O)P(O)CH(2)(C(4)H(2)ClO) (4) and (OCH(2)CMe(2)CH(2)O)P(O)(CH=CHCH(Cl)Ph (7) have been determined; in addition, the stereochemistry of (5-chlorofurfuryl)CH=CH(4-ClC(6)H(4)) (13b) and 2, 4-Cl(2)C(6)H(3)-CH=CH-CH=C(Ph)Cl (14a) is unambiguously proved by the X-ray structure determination.  相似文献   

7.
王燕芳  李金翠  吴毓林 《化学学报》1990,48(10):1024-1029
本文报道由抗坏血酸为手性源合成白三烯B4中11-C-20-C片断2R-羟基-癸-4(Z)-烯醛衍生物的新路线。在此合成过程中也发现Wittig反应时硅醚保护基由仲羟基向邻位伯羟基的部分以至完全移位的状况。  相似文献   

8.
The three-coordinate nickel(I) alkyl complexes (dtbpe)Ni(CH2CMe3) (2), (dtbpe)Ni(CH2SiMe3) (3), and (dtbpe)Ni(CH2CMe2Ph) (4) have been prepared by treatment of [(dtbpe)NiCl]2 with alkyllithium reagents. While thermally robust, they each undergo mild one-electron oxidation to give the corresponding Ni(II) complex cations [(dtbpe)Ni(CH2CMe3)+] (5), [(dtbpe)Ni(CH2SiMe3)+] (6), and [(dtbpe)Ni(CH2CMe2Ph)+] (7) as red-brown [PF6-] or [BArF4-] salts. In contrast to cationic amido and phosphido analogues that undergo alpha-deprotonation to afford imido and phosphinidene derivatives, deprotonation of 5-7 occurs at a gamma-CH3 group to give metallacyclobutane products (dtbpe)Ni(CH2CMe2CH2) (8), (dtbpe)Ni(CH2SiMe2CH2) (9), and (dtbpe)Ni(CH2CPhMeCH2) (10), not (dtbpe)Ni=CHR.  相似文献   

9.
The reaction in 1:1 molar ratio of {\gg4}OGOAsCl , where G = CH 2 CH 2 , CHMeCHMe, CMe 2 CMe 2 , CHMeCH 2 CMe 2 , and CMe 2 CH 2 CH 2 CMe 2 , and substituted phenols ArOH (Ar = C 6 H 3 Me 2 -2,6; C 6 H 3 Pr i -5-Me-2; C 6 H 3 Pr i -2-Me-5 and C 6 H 3 Pr i 2 -2,6), in the presence of one equivalent of triethylamine in benzene afford volatile colorless liquids of the type {\gg4}OGOAsOAr . All these derivatives have been characterized by elemental analyses, molecular weight measurements, and spectroscopic [IR, NMR( 1 H and 13 C)] studies.  相似文献   

10.
The hypervalent adducts of SiF(4), trans-[SiF(4)(R(3)PO)(2)] (R = Me, Et or Ph), cis-[SiF(4){R(2)P(O)CH(2)P(O)R(2)}] (R = Me or Ph), cis-[SiF(4)(pyNO)(2)] and trans-[SiF(4)(DMSO)(2)] have been prepared from SiF(4) and the ligands in anhydrous CH(2)Cl(2), and characterised by microanalysis, IR and VT multinuclear ((1)H, (19)F, (31)P) NMR spectroscopy. The NMR studies show extensive dissociation at ambient temperatures in non-coordinating solvents, but mixtures of cis and trans isomers of the monodentate ligand complexes were identified at low temperatures. Crystal structures are reported for trans-[SiF(4)(R(3)PO)(2)] (R = Me or Ph), and cis-[SiF(4)(pyNO)(2)]. The GeF(4) analogues cis-[GeF(4){R(2)P(O)(CH(2))(n)P(O)R(2)}] (R = Me or Ph, n = 1; R = Ph, n = 2) were similarly characterised and the structures of cis-[GeF(4){R(2)P(O)CH(2)P(O)R(2)}] (R = Me or Ph) determined. The reaction of R(3)AsO (R = Me or Ph) with SiF(4) does not give simple adducts, but forms [R(3)AsOH](+) cations as fluorosilicate salts. SiF(4) adducts of some ether ligands (including THF, 12-crown-4) were also characterised by (19)F NMR spectroscopy in solution at low temperatures (~190 K), but are fully dissociated at room temperature. Attempts to isolate, or even to identify, SiF(4) adducts with phosphine or thioether ligands in solution at 190 K were unsuccessful, contrasting with the recent isolation and detailed characterisation of GeF(4) analogues. The chemistry of SiF(4) with these oxygen donor ligands, and with soft donors (P, As, S or Se), is compared and contrasted with those of GeF(4), SnF(4) and SiCl(4). The key energy factors determining stability of these complexes are discussed.  相似文献   

11.
Cycloaddition reactions of allenylphosphonates [(RO)(2)P(O)[(R(1))C═C═CR(2)(2)] with dialkyl acetylenedicarboxylates, 1,3-diphenylisobenzofuran, and anthracene have been investigated and compared with those of allenoates [(EtO(2)C)RC═C═CH(2)] and allenylphosphine oxides [Ph(2)P(O)(R(1))C═C═CR(2)(2)] in selected cases. Allenylphosphonates (RO)(2)P(O)(Ar)C═C═CH(2) with an α-aryl group preferentially undergo [4 + 2] cycloaddition with DMAD/DEAD under thermal activation, but in addition to the expected 1:1 (allene: DMAD) product, the reaction also leads to 1:2 as well as 2:1 products that were not reported before. When an extra vinyl group is present at the γ-carbon of allenylphosphonate [e.g., (OCH(2)CMe(2)CH(2)O)P(O)(Ph)C═C═CH(C═CHMe)], [4 + 2] cycloaddition takes place utilizing either the vinylic or the aryl end, but additionally a novel cyclization wherein complete opening of the [β,γ] carbon-carbon double bond of the allene is realized. In contrast to these, the reaction of allenylphosphonate (OCH(2)CMe(2)CH(2)O)P(O)(H)C═C═CMe(2) possessing a terminal ═CMe(2) group with DMAD occurs by both [2 + 2] cycloaddition and ene reaction. While the reaction of ═CH(2) terminal allenylphosphonates as well as allenylphosphine oxides with 1,3-diphenylisobenzofuran afforded preferentially endo-[4 + 2] cycloaddition products via [α,β] attack, the analogous allenoates [(EtO(2)C)RC═C═CH(2)] underwent exo-[4 + 2] cyclization. Under similar conditions, allenylphosphonates with a terminal ═CR(2) group gave only [β,γ]-cycloaddition products. An unusual ring-opening of a [4 + 2] cycloaddition product followed by ring-closing via [4 + 4] cycloaddition, as revealed by (31)P NMR spectroscopy, is reported. Anthracene reacted in a manner similar to 1,3-diphenylisobenzofuran, albeit with lower reactivity. Key products, including a set of exo- and endo- [4 + 2] cycloaddition products, have been characterized by single crystal X-ray crystallography.  相似文献   

12.
Oxidative addition of elemental sulfur and selenium to cyclomonocarbatetraphosphines (PhP)4CR2 (R = H, Me) afforded novel five- and four-membered heterocycles PhP(E)CH2PhP(E)E2(E = S, Se) and PhP(Se)CMe2-PhP(Se)Se.  相似文献   

13.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

14.
The Wittig reaction of (1-adamantylmethylidene)triphenylphosphorane (Ph(3)P=CH(1-Ad)) with benzaldehyde was investigated, and the results were compared with those of other ylides. The substituent effect in the reaction of the ylide with benzaldehydes was determined by competition experiments, which gave a Hammett rho value of 3.2. The rho value is much larger than those reported for analogous reactions of Ph(3)P=CH(CH(2))(2)CH(3) (rho = 0.20) and Ph(3)P=CH(CH(3))(2) (rho = 0.59), indicating that the reaction mechanism differs for Ph(3)P=CH(1-Ad) and the other ylides. The cis/trans ratio of the product alkene is 74/26 for the reaction with the parent benzaldehyde and highly depends on the position of the substituent; ortho substituted benzaldehydes gave the trans alkenes up to 90%. Monitoring the reaction by means of (31)P NMR revealed that both cis and trans oxaphosphetane intermediates were formed and that the formation and decomposition of the cis oxaphosphetane are 7-12 times faster than those of the trans oxaphosphetane. From the comparison of the reaction of Ph(3)P=CH(1-Ad) + benzaldehyde with those of Ph(3)P=CH(CH(2))(2)CH(3) + benzaldehyde and benzophenone, and Ph(3)P=CH(CH(3))(2) + benzophenone, it was concluded that all the reactions with these nonstabilized ylides proceed via an electron-transfer mechanism and that the rate-determining step changes from the electron transfer step to that of radical combination when the substrate or ylide becomes more sterically demanding.  相似文献   

15.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

16.
The coupling between coordinated propiononitriles in trans-[PtCln(EtCN)2] (n = 2, 4) and the 1,2-hydroxylaminooximes HON(H)CMe2C(R)=NOH (R = Ph 1, Me 2) proceeds smoothly in CHCl(3) at ca. 40-45 degrees C and gives trans-[PtCln{NH=C(Et)ON(H)CMe2C(R)=NOH}2] (n = 2, R = Ph 5, Me 6; n = 4, R = Ph 7, Me 8) in 80-85% isolated yields. The reaction is highly regioselective, and both spectroscopic (IR; FAB+-MS; 1D 1H, 13C{1H}, and 195Pt NMR; and 2D 1H,13C HMQC, 1H,13C HMBC, and 1H,15N HMQC NMR) and X-ray data for 6-8 suggest that the addition proceeds exclusively via the hydroxylamine moiety of the 1,2-hydroxylaminooxime species; the existence of an oxime group remote from the nucleophile was also confirmed. Heating of 6 in air leads to its conversion to the unusual nitrosoalkane complex [PtCl2{HON=C(Me)C(Me)2N=O}] (9), whereas in the case of 5, only the metal-free salt [H3NC(Me)2C(Ph)=NOH]2(NO3)Cl.H2O (10) was isolated. To compare the kinetic aspects and trends in the addition of both types of nucleophiles (oximes and hydroxylamines; for the latter, see our recent work: Inorg. Chem. 2005, 44, 2944) to coordinated nitriles, a kinetic study of the addition of HON=C(CH2Ph)2 to [Ph3PCH2Ph][PtCl5(EtCN)] (11) to give [Ph(3)PCH(2)Ph][PtCl(5){NH=C(Et)ON=C(CH2Ph)2}] (12) was performed. The calculated rate constant k2 of 3.9 x 10(-6) M(-1) s(-1) at -20 degrees C for the addition of the oxime indicates that the hydroxylamine is, by a factor 1.7 x 10(4), more reactive toward the addition to nitriles than the oxime. Results of the synthetic, kinetic, and theoretical (at the B3LYP level of theory) studies have demonstrated that the high regioselectivity of the reactions of the 1,2-hydroxylaminooximes with ligated nitriles is both kinetically and thermodynamically controlled.  相似文献   

17.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

18.
Huang JS  Yu GA  Xie J  Wong KM  Zhu N  Che CM 《Inorganic chemistry》2008,47(20):9166-9181
Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.  相似文献   

19.
A series of bithiophene derivatives that are either symmetrically disubstituted with two Ph(2)(X)P groups (X = O, S, Se) or monosubstituted with one Ph(2)(X)P group (X = O, S, Se) and an organic functional group (H, CHO, CH(2)OH, CO(2)Me) have been synthesized. The X-ray crystal structures of Ph(2)(Se)P(C(4)H(2)S)(2)P(Se)Ph(2), Ph(2)(O)P(C(4)H(2)S)(2)H, Ph(2)(S)P(C(4)H(2)S)(2)H, and Ph(2)(O)P(C(4)H(2)S)(2)CH(2)OH exhibit very different solid-state structures depending on the type of intermolecular π-π interactions that occur. The compounds have been characterized by electronic absorption and fluorescence studies. Of particular interest is that the quantum yields of Ph(2)(O)P(C(4)H(2)S)(2)H, Ph(2)(O)P(C(4)H(2)S)(2)P(O)Ph(2), Ph(2)(O)P(C(4)H(2)S)(2)CO(2)Me, and Ph(2)(O)P(C(4)H(2)S)(2)CH(2)OH are significantly larger than that of bithiophene (factors of 13, 14, 14, and 22, respectively). This behavior is quite different from that of analogously substituted terthiophenes in which substitution results in only modest increases in the quantum yields over that of terthiophene (factors of 0.94, 2.7, 1.3, and 1.5, respectively). DFT studies of the emission process suggest that modifying the Ph(2)(X)P group affects both the fluorescence and nonradiative rate constants while modifications of the organic substituents primarily affect the nonradiative rate constants. The higher quantum yields of the substituted bithiophenes make them promising for application in organic light-emitting devices (OLED). The optical power limiting (OPL) performances of these Ph(2)(X)P-substituted bithiophenes were evaluated by nonlinear transmission measurements in the violet-blue spectral region (430-480 nm) with picosecond laser pulses. The OPL performances are enhanced by heavier X groups and when by higher solubilities. Saturated chloroform solutions of Ph(2)(O)P(C(4)H(2)S)(2)H and Ph(2)(S)P(C(4)H(2)S)(2)H exhibit significantly stronger nonlinear absorption than any previously reported compounds and are promising candidates for use in broadband optical power limiters.  相似文献   

20.
The iminophosphorane Ph(2)P(CH(2)Py)(NSiMe(3)) (1) was treated with deprotonating alkali metal reagents to give [(Et(2)O)Li[Ph(2)P(CHPy)(NSiMe(3))]] (2), [[Ph(2)P(CH(2)Py)(NSiMe(3))]Li[Ph(2)P(CHPy)(NSiMe(3))]] (3) and [[Ph(2)P(CH(2)Py)(NSiMe(3))]Na[Ph(2)P(CHPy)(NSiMe(3))]] (4). We report their coordination behaviour in solid-state structures and NMR spectroscopic features in solution. Furthermore, we furnish experimental evidence against hypervalency of the phosphorus atom in iminophosphoranes from experimental charge-density studies and subsequent topological analysis. The topological properties, correlated to the results from NMR spectroscopic investigations, illustrate that the formal P=N double bond is better written as a polar P(+)--N(-) single bond. Additionally, the effects of metal coordination on the bonding parameters of the iminophosphorane and the related anion are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号