首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-photon excited laser-induced fluorescence (LIF) spectra of argon atom were successfully observed in a Grimm-style glow discharge tube, which has widely been applied to depth profiling of the elemental composition on various film-like samples by emission spectrometry. The LIF signal of an argon atomic line at 641.63 nm was observed when the glow discharge argon plasma was illuminated by a pulsed Ti:sapphire laser radiation of 7–10 mJ/pulse at 753.39 or 795.66 nm without focusing of the laser beam.  相似文献   

2.
The emission intensities and the signal‐to‐background ratios (SBRs) of copper emission lines in the wavelength range 200–360 nm were observed from a medium‐voltage spark discharge plasma when argon or helium was employed as the surrounding gas. The observed copper spectra comprised Cu(I) lines having excitation energy of 3.8–9.3 eV, and Cu(II) lines assigned to three different transitions: 3d 84p–3d 84s transition (excitation energy of 8.2–9.2 eV), 3d 85s–3d 84p transition (13.4–13.6 eV), and the 3d 84d–3d 84p transition (14.2–14.8 eV). The Cu(I) lines have much smaller intensities in the helium plasma compared with the argon plasma, whereas the Cu(II) lines have similar intensities between both plasmas. The SBRs of some ionic copper lines are larger in the helium plasma compared with the argon plasma. Therefore, when an ionic line has to be measured in the analytical applications, the helium plasma should be recommended.  相似文献   

3.
《光谱学快报》2013,46(5-6):561-572
Spectra of yttrium and zirconium emitted from a Grimm‐style glow discharge plasma were investigated to elucidate the excitation mechanism of doubly‐charged ionic lines when using argon–helium mixed gas as well as argon gas alone. The energy sum for exciting doubly‐charged ion species of yttrium is slightly smaller compared to the case of zirconium, which yields an interesting correlation in the excitation energy between their ionic species and excited species of helium or argon. The Y III emission lines which were assigned to the 4p65p–4p65s(4p64d) transitions could be observed in the argon–helium mixed gas plasma, but those were hardly excited with argon gas only. The Zr III emission lines did not appear in the spectra emitted by the argon gas plasma nor by the mixed gas plasma. A possible explanation for these phenomena is that the excitation of these ionic species is caused principally by collisional energy transfer from helium species to the analyte atoms.  相似文献   

4.
In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 1 l/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm???3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 μJ with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.  相似文献   

5.
For a balanced dc magnetron discharge a linear model for the formation of excited and ionized species is presented. The consideration is based on collisional kinetic theory and a correlation of discharge current with ionization rates, and leads to normalized rate coefficients. The electron energy distribution changes according to the determining external parameters, but needs neither to be known in detail nor to be of Maxwellian type. The model calculations are consistent with measurements done by optical emission spectroscopy (OES) on the magnetron sputtering of aluminium in argon discharges. The dependences of optical emission intensities on discharge current and on argon pressure show that both, excited argon atoms as well as excited argon ions, are generated from neutral argon by direct, fast electron impact. It is additionally shown that at least for low argon pressure the excitation of aluminium atoms is also caused by direct electron impact.  相似文献   

6.
In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of ?41.98 mV for the gold nanoparticles and ?53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.  相似文献   

7.
Dependence of the neutral gas temperature on the gas pressure and discharge power in an inductively coupled plasma source has been investigated using optical emission spectroscopy. Both nitrogen and argon plasmas have been studied separately. In the case of argon plasma, about 5% nitrogen was added to the total gas flow as an actinometer. The maximum temperature was found to be as high as 1850 K at 1 Torr working pressure and 600 W radiofrequency power. The temperature increases almost linearly with the logarithm of the gas pressure, but changes only slightly with the discharge power in the range of 100–600 W. In a nitrogen plasma, a sudden increase in the neutral gas temperature occurs when the gas pressure is increased at a given discharge power. This suggests a discharge-mode transition from the H-mode (high plasma density) to the E-mode (low plasma density). In the H-mode, the gas temperature is proportional to the logarithm of the gas pressure, as in the argon plasma. However, the gas temperature increases almost linearly with the discharge power, which is in contrast to the case of argon plasma. The electron density in the nitrogen plasma is about 10% of that in the argon plasma. This may explain the observation that the nitrogen neutral temperature is always lower than the argon neutral temperature under the same discharge power and gas pressure.  相似文献   

8.
The synthesis procedure represents a key aspect in designing the physical and chemical properties of gold nanoparticles. The current study proposes a simple approach for gold nanoparticles synthesis using non-thermal plasma. The novelty of the setup consists in producing an in-liquid plasma discharge in argon bubbles that are externally generated in the solution exposed to treatment. Because plasma is the source of active species which are directly involved in gold reduction, no additional reducing agent was necessary. Collagen protein was used as capping agent. A plasma treatment of 10 min is sufficient for obtaining stable colloidal solutions with UV-Vis absorption maximum at 530 nm. Transmission electron microscopy images revealed preponderant spherical nanoparticles with dimensions in the range of 6–20 nm. The method of synthesis distinguishes by its good reproducibility, facility, efficiency, and ability to generate stable colloidal nanoparticles after several minutes of plasma exposure.  相似文献   

9.
周倩  于淼  张秀玲 《光散射学报》2013,25(2):209-213
采用自行设计的介质阻挡放电反应器,以氩气和离子液体为放电介质,实现大气压下稳定的气(等离子体)-液(离子液体)等离子体放电,并运用光谱法在线诊断氩等离子体光谱。考察了不同咪唑基离子液体以及放电参数对大气压氩气介质阻挡放电光谱的影响。结果表明,离子液体的引入降低了氩气放电光谱的强度,谱峰强度与离子液体阳离子咪唑环上的碳链长度有关,且随碳链长度增加,谱峰强度降低;同时阴离子结构对称性低的离子液体,谱峰强度较低。加入离子液体后氩谱随放电电压及放电频率变化均呈现峰值变化。  相似文献   

10.
王建龙  丁芳  朱晓东 《物理学报》2015,64(4):45206-045206
在高气压(大于100 Torr, 1 Torr=1.33322×102 Pa)平板位形的均匀直流辉光放电中, 一定条件下观察到平行排列的明暗相间的等离子体辉纹. 结合等离子体的光发射谱诊断, 研究了气体组分对等离子体光学特性的影响. 研究发现, 随着甲烷浓度的增加, 辉纹间距减小, 相应的电子激发温度降低. 当甲烷浓度增加时, 等离子体中低电离能的粒种增加, 粒子平均电离能减小, 这种情况下, 电子被电场加速较短的距离所获得的能量就可以激发粒子, 产生可见的光发射, 表现为辉纹间距缩短. 随着氩气的引入, 能够观察到明显的辉纹, 且增大氩气含量, 辉纹间距增加, 这与氩的较高电离能有关, 而相应的电子激发温度增加. 研究结果表明, 随着工作气体的改变, 等离子体辉纹间距呈现出一种对电子温度的响应.  相似文献   

11.
Ag and Au nanoparticles are obtained by magnetron sputtering and pulsed laser deposition under different conditions, and the features of their absorption spectra associated with plasmon resonances are investigated. Optimal deposition conditions for obtaining small (5?C10 nm) silver nanoparticles with a high density of surface distribution include an increased argon pressure (2.5 × 10?2 Torr) and a low discharge voltage (100 V). Gold nanoparticle arrays obtained by pulsed laser deposition at a temperature of 200°C in vacuum are more uniformly distributed on the substrates than those deposited at room temperature in argon. It is shown that the maximum of the plasmon absorption shifts toward shorter wavelengths with a decrease in the equivalent thickness of metal films and depends not only on this thickness but also on the type of substrate, which is responsible for the morphology of nanoparticle arrays.  相似文献   

12.
This study describes a measuring system for mass spectrometry, consisting of a glow discharge ionization source for soft plasma ionization and a time-of-flight mass spectrometer, to detect toxic volatile organic compounds rapidly and easily. It is the most important to determine how the complicated fragmentation of such compounds can be suppressed to occur so as to recognize the mass spectra of the volatile organic compounds as their fingerprints. The novelty of this work is that the optimal discharge condition for the soft plasma ionization–time-of-flight mass spectrometer system could be selected, so that the parent mass peak of analyte molecules could be observed both with high sensitivity and with little or no fragmentation of them. Use of air gas at a pressure of 1000 Pa provided the most favorable result for these criteria, whereas, in a previous report, the soft plasma ionization source operating with argon at a pressure of 346 Pa had yielded additional mass peaks of the fragmented species. The reason for this would be explained by the fact that energetic electrons in the plasma, which principally cause the fragmentation of the volatile organic compounds, have lower number density at higher gas pressures, through de-accelerated collisions with the plasma gas.  相似文献   

13.
The dynamics of the excited states on a laser-ablated Mo plume was studied, both in air and in vacuum, by emission spectroscopy along the plume expansion axis. The emission related to ionized atoms occurs in the beginning of the plume expansion, near the metal surface, and is predominantly ultraviolet emission. In the middle of the plasma plume, it takes place the electron transitions between excited states of neutral atoms, and in the end of the plume, the visible emission is to transitions to the ground state of neutral molybdenum atoms. It was possible to determine plume parameters such as plasma expansion velocity of (5.0 ± 0.7) km/s at atmospheric pressure and (4.0 ± 0.7) km/s in vacuum, and the plasma duration that was (160 ± 14) ns at atmospheric pressure and (138 ± 18) ns in vacuum.  相似文献   

14.
大气压氩直流微放电光谱研究   总被引:1,自引:1,他引:0  
微空心阴极放电或微放电是一种能够实现高气压下放电的有效方法。利用不锈钢空心针作阴极,不锈钢网作阳极,进行了大气压氩直流微放电实验研究。测量了大气压氩微放电光谱,发现氩气的发 射谱线主要集中在690~860 nm范围,且全部为氩原子4p—4s的跃迁。实验研究了不同放电电流、气体压强、气体流量与谱线强度之间的关系,发现谱线强度随放电电流、气体流量增加均增加,而谱线强 度随压强变化呈现不同特征:谱线强度随压强的增加先增加后降低,在13.3 kPa时强度最大。此外,选用跃迁波长为763.51和772.42 nm的两条光谱线,利用发射谱线强度比值法测量了氩气微放电等离子 体的电子激发温度。结果显示,其电子激发温度处于2 000~2 800 K之间,且随放电电流的增加而增加,随气体压强和气体流量的增加而降低。  相似文献   

15.
使用水电极介质阻挡放电装置,对比氩气与氩气/少量空气的混合气体以及空气与空气/少量氩气的混合气体放电的发射光谱,研究了氩气与空气相混合时气体放电中的能量传递过程。实验发现, 当氩气中加入少量的空气时,氩原子谱线均变弱,说明空气中的氮分子对氩原子的各激发态具有猝灭作用。并且随着空气含量的增加,各谱线变弱的速率不同。越是与氮分子的激发电位接近的氩原子的激发态被猝灭的作用越明显。另一方面,当空气中加入少量氩气时,发现氮分子第二正带系和氮分子离子第一负带系的谱线均被增强。说明在空气/少量氩气放电中,氮分子的激发由于亚稳态氩原子的潘宁激发传能而增强。因此在氩气/空气混合气体放电中,气体成分及比例影响放电的发光特性和能量传输特性。  相似文献   

16.
Thin SiC x films were fabricated by hybrid laser–magnetron deposition system. KrF excimer laser was used for deposition of carbon and magnetron at the same time for sputtering of Si species. Films were fabricated in argon/hydrogen ambient with and without additional RF discharge. The substrate temperature was changed up to 700°C. Films topology, crystallinity, composition, chemical bonds and optical emission spectra were studied. Films were smooth and amorphous. Films of thickness 400–1000 nm were fabricated. Adhesion moved from 8 to 14 N, depending on deposition conditions.  相似文献   

17.
Absorption and luminescence properties of silver nanoclusters embedded in SiO2 matrixes were studied experimentally. Thin SiO2 films with different amount of silver were produced by co-deposition of Ag and SiO2 onto the silica substrates in vacuum. The thus obtained films possess three peaks in absorption spectra at 297, 329 and 401 nm and two peaks in luminescence spectra at about 500 and 650 nm. We ascribed these spectral features to silver nanoclusters of different sizes that present in the film. Thermal annealing transforms both absorption and emission spectra of the films. Lager clusters that are formed after annealing possess one absorption band at 350–450 nm and one luminescence band at 510 nm. The luminescence was observed only in samples with the silver content of less than 2.2%. Quenching of the luminescence in samples with higher concentration of silver is due to the presence of larger particles with plasmonic properties.  相似文献   

18.
Intense lasing had been obtained from argon plasma in the soft X-ray region from a capillary discharge plasma system. Different diagnostics have been used to characterize the lasing properties by recording the temporal, spatial, and spectral profiles of the emission. The divergence measurement indicates that the soft X-ray laser beam has good directionality with a divergence of 3.5 mrad. The spectrum of the laser beam measured using a transmission grating showed intense lasing line at 46.9 nm. Diffraction orders as high as 10th orders were observed. The temporal profile recorded with a vacuum diode showed a distinct laser peak with a pulse width ~1.2 ns (FWHM). In addition, the coherence of the X-ray laser beam was also confirmed from the high-contrast interference fringes (visibility ~85 %) recorded using double slits.  相似文献   

19.
针对活性剂等离子弧焊焊接过程,利用光谱分析方法对活性剂等离子弧焊焊接电弧进行光谱分析,采用红外热像伪着色法测定活性剂等离子弧焊焊接电弧温度场,并建立活性剂等离子弧焊焊接电弧热流密度径向分布模型,对焊接电弧的成分及焊接电弧温度场进行了研究。研究结果表明,常规等离子焊焊接电弧以氩原子和氩一次电离离子的谱线为主,金属蒸气谱线不突出,焊接电弧以气体粒子为主,属于气体电弧;活性剂等离子弧焊焊接电弧的光谱中氩原子及氩一次离子谱线的辐射强度增强,Ti,Cr,Fe金属谱线大量涌现;活性剂等离子弧焊焊接电弧的温度分布比较紧凑,温度场外形窄,温度分布范围较集中,电弧径向温度梯度较大;电弧径向温度分布呈现正态Gauss分布模式。  相似文献   

20.
采用磁控溅射仪、Omni-λ300系列光栅光谱仪、CCD数据采集系统和光纤导光系统等构成的等离子体光谱分析系统,采集了以Cu和Al为靶材、氩气为工作气体,射频磁控溅射法沉积硅基薄膜时的等离子体发射光谱。以CuⅠ324.754 nm,CuⅠ327.396 nm,CuⅠ333.784 nm,CuⅠ353.039 nm,AlⅠ394.403 nm和AlⅠ396.153 nm为分析线,研究了Cu和Al等离子体发射光谱强度随溅射时间、溅射功率、靶基距和气体压强等实验参数的变化。并与射频磁控溅射沉积薄膜实验参数的选择进行对比,表明发射光谱法对射频磁控溅射薄膜生长条件的优化有着很好的指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号