首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Abstract

The reactions of 5-chloro-2-thiophenesulfonyl chloride are described. Treatment of the sulfonyl chloride with ammonia, hydrazine hydrate, sodium azide, indole and imidazole gave the sulfonamides (5), sulfonohydrazide (4), sulfonyl azide (3), 1-(5-chloro-2-thiophenesulfonyl)indole (27) and 1-(5-chloro-2-thiophenesulfonyl)-imidazole (26), respectively. The sulfonyl chloride was reacted further with 20 aryl-and cycloalkyl-amines to give the corresponding sulfonamides (6)-(25). Attempted chlorination of the sulfonyl chloride (2) with sulfuryl chloride or bromination of the sulfonyl azide (3) with pyridinium bromide perbromide failed. However, nitration of the sulfonyl chloride (2) with fuming nitric acid gave the 4-nitro-sulfonyl chloride (28), which with sodium azide afforded the 5-chloro-4-nitro-sulfonyl azide (29). The sulfonyl azides, (3) and (29), have been reacted with triphenylphosphine, triethylphosphite, norbornene and cyclohexene. The azides reacted further with indole and 1-methylindole to give the 2-sulfonyl-iminoindolines (34)-(36). The infra-red spectra and mass spectra of some of the substituted thiophenesulfonyl derivatives are discussed.  相似文献   

2.
Two salicylaldehyde derivatives (1 and 2), a hydroxymethylphenol (3), five dihydroisobenzofuran (48) derivatives, and a 5-chloro-3-deoxyisoochracinic acid (9), together with a known 3-deoxyisoochracinic acid (10) were isolated from the marine fungus Zopfiella marina BCC 18240 (or NBRC 30420). The structures of these compounds were elucidated by extensive spectroscopic analysis. Compound 1 showed weak antituberculous activity against Mycobacterium tuberculosis H37Ra, and antibacterial activity against Bacillus cereus with MIC values of 25 and 12.5 μg/mL, respectively.  相似文献   

3.
《合成通讯》2013,43(22):3557-3567
A simple and easy method is provided for the synthesis of the novel pyridinone derivatives (3a–e), (8a–c) and (10a–c) by the reaction of ketene acetals (2a–e), (7a–c) and (9a–c) with ethyl cyanoacetate respectively. Compounds (3b–d) reacted with triethyl orthoformate to afford the pyridinone derivatives (4-6) respectively. Compound 7a reacted with ethyl acetoacetate or diethyl malonate to give thiazolopyridinone derivative 11 or 12 respectively.  相似文献   

4.
The present study aimed to investigate the synthetic potentiality and chemical reactivity of 2-thioxo-1,2-dihydropyridine-3-carbonitrile derivative 1. This goal performed via its reaction with each of 1-chloroacetone and iodomethane to afford the corresponding 2-alkylthio derivatives 3 and 9, respectively. Compound 3 underwent intramolecular cyclization to afford the corresponding thieno[2,3-b]pyridine derivative 4 which in turn, reacted with dimethylformamide/dimethylacetal followed by hydrazine hydrate and nitrous acid to afford the corresponding pyridothienopyrimidine and pyridothienopyridazine derivatives 6 and 8, respectively. On the other hand, Compound 9 reacted with hydrazine hydrate to give 3-aminopyrazolo[3,4-b]pyridine derivative 10, which diazotized with nitrous acid to give the corresponding diazonium salt 11. Compound 11 coupled with several active –CH2-containing reagents to synthesize the corresponding pyridopyrazolo-triazines 15, 24, 29, and 31. The formulas of all newly synthesized heterocyclic compounds were elucidated by considering the data of IR, 1H NMR, Mass spectral data, as well as data from elemental analyses.  相似文献   

5.
Two naturally occurring xanthones, ananixanthone (1) and β-mangostin (2), were isolated using column chromatographic method from the n-hexane and methanol extracts of Calophyllum teysmannii, respectively. The major constituent, ananixanthone (1), was subjected to structural modifications via acetylation, methylation and benzylation yielding four new xanthone derivatives, ananixanthone monoacetate (3), ananixanthone diacetate (4), 5-methoxyananixanthone (5) and 5-O-benzylananixanthone (6). Compound 1 together with its four new derivatives were subjected to MTT assay against three cancer cell lines; SNU-1, K562 and LS174T. The results indicated that the parent compound has greater cytotoxicity capabilities against SNU-1 and K562 cell lines with IC50 values of 8.97 ± 0.11 and 2.96 ± 0.06 μg/mL, respectively. Compound 5 on the other hand exhibited better cytotoxicity against LS174T cell line with an IC50 value of 5.76 ± 1.07 μg/mL.  相似文献   

6.
Four thymol derivatives and two phenolic compounds were isolated from the aerial parts of Eupatorium fortunei. The new structures were elucidated to be 7,8,9-trihydroxythymol (1), and 8,10-didehydro-7,9-dihydroxythymol (2) by means of MS and NMR analysis. The known compounds were identified as 8,9,10-trihydroxythymol (3), 10-acetoxy-8,9-dihydroxythymol (4), o-coumaric acid (5) and 4-(2-hydroxyethyl)benzaldehyde (6). Compound 3 showed strongest inhibitory effect on the growth of Microcystis aeruginosa in comparison with CuSO4.  相似文献   

7.
Pyridine-2(1H)-thione 5 was synthesized from the reaction of 3-[3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]-1-phenylpropenone (3) and cynothioacetamide (4). Compound 5 reacted with halogented compounds 6a–e to give 2-S-alkylpyridine derivatives 7a–e, which could be in turn cyclized into the corresponding thieno[2,3-b]-pyridine derivatives 8a–e. Compound 8a reacted with hydrazine hydrate to give 9. The latter compound reacted with acetic anhydride (10a), formic acid (10b), acetic acid, ethyl acetoacetate, and pentane-2,4-dione to give the corresponding pyrido[3′,2′:4,5]thieno-[3,2-d]pyrimidine 13a,b, pyrazolo[3′,4′:4,5]thieno[3,2-d]pyridine 14 and thieno[2,3-b]-pyridine derivatives 18 and 20, respectively. Alternatively, 8c reacted with 10a,b and nitrous acid to afford the corresponding pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine 24a,b and pyrido[3′,2′:4,5]thieno[3,2-d][1,2,3]triazine 26 derivatives, respectively. Finally compound 5 reacted with methyl iodide to give 2-methylthiopyridine derivative 27, which could be reacted with hydrazine hydrate to yield the corresponding pyrazolo[3,4-b]-pyridine derivative 29.  相似文献   

8.
A new series of coumarin derivatives (2–5) was synthesized by reaction of phenylsulfonylacetonitrile (1) with 2-hydroxy-1-naphthaldehyde and/or salicyaldehyde. Compounds 3 and 5 were converted to the corresponding phenanthridine analogs 6 and 7, respectively. Compound 9a was treated with different dienophiles to furnish the endo adducts of compounds (11ad) rather than the exo adducts. Ab initio calculations at the Hartree-Fock (HF) level using the basis set 6-31 G (d,p) was used to study and validate the stereospecificity of compounds 11a–d and showed clearly that the endo adducts were thermodynamically favorable. PM3 parameters also showed that the endo adducts are thermodynamically and kinetically favorable. Tetrahydrobenzochromenone (11) was synthesized and allowed to react with different aromatic diazonium salts to give the corresponding 4-arylazo derivatives (13), which were converted to the corresponding diazaindenophenanthrene derivatives (14) by reaction with o-diamines.  相似文献   

9.
Condensation of 4-acetyl-5-methyl-2-phenyl-2,4-dihydropyrazol-3-one (1) with hydrazine derivatives (2a–d) afforded hydrazone derivatives (3a–d), which reacted with alkyl halides 4a–c to give bis(alkylthio)methylene derivatives (5a–e). Also, 3a,b reacted with hydrazonyl halides 6a–d to give 1,3,4-thiadiazole (7a–d). Cyclization of 3c with ethyl bromoacetate and haloketones gave thiazolidinone and thiazole derivatives (8, 10a,b) respectively. Treatment of hydrazone (3d) with benzylidine malononitrile 13a,b gave pyridine (14a,b). In addition, cyclocondensation of 3d with phenolic aldehydes furnished coumarin derivatives (16a–c). Coupling of 3d with heterocyclic diazonium salts gave triazol[5,1-c]triazine (20) and pyrazolo[5,1-c]triazine (22). Some of the prepared products showed potent antimicrobial activity.  相似文献   

10.
2-acetyl-3-amino-4,6-dimethylthieno[2,3-b]pyridine 1 reacted with dimethoxy-tetrahydrofuran in acetic acid and ethyl cyanoacetate in the presence of ammonium acetate or with NaNO2 in the presence of an AcOH/HCl mixture to produce 2–4. Compound 2 reacted with aromatic aldehydes, semicarbazide hydrochloride, thiosemicarbazide, and phenyl hydrazine or with hydrazine hydrate to give compounds 5a–c and 11a–d, respectively.

Chalcone 5 reacted with hydrazines, hydroxylamine hydrochloride, or thiourea to produce compounds 6–9. Thiosemicarbazone 11b reacted with α -haloester to produce the corresponding thiazolidinone derivatives 12a, b ; also it reacted with ω -bromoacetophenone to give thiazoline derivatives 13a, b .  相似文献   

11.
4-(3-(4-Hydroxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-6-phenyl-2-thioxo-1,2-di hydro-pyridine-3-carbonitrile (1) reacted with ethyl chloroacetate (2) in ethanolic sodium acetate solution to yield the corresponding ethyl (3-cyanopyridin-2-ylsulphanyl)acetate derivative 3. Intramolecular cyclization of compound 3 was achieved by its heating in DMF containing potassium carbonate to afford the corresponding ethyl 3-aminothieno[2,3-b]pyridine-2-carboxylate derivative 4 which reacted with hydrazine hydrate in refluxing pyridine to yield the starting material 3-aminothieno[2,3-b]pyridine-2-carbohydrazide derivative 7. Compound 7 reacted with different reagents such as triethylorthoformate, formic acid, acetic acid and acetic anhydride to afford the target molecules pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-one derivatives 8–10, 12 and 13 in good to excellent yields. On the other hand, pyridine-2(1H)-thione derivative 1 reacted with hydrazine hydrate in refluxing pyridine to give the other starting material 3-amino-1H-pyrazolo[3,4-b]pyridine derivative 20 which reacted with acetylacetone under reflux to afford the target molecule pyrido[2′,3′:3,4]pyrazolo[1,5-a]-pyrimidine derivative 21 in a good yield. The structures of target molecules were elucidated using elemental analyses and spectral data.  相似文献   

12.
Ethyl α‐cyano‐β‐(1‐chloro‐3,4‐dihydronaphthalene‐2‐yl) acrylate (2) was prepared by the Knoevenagel condensation of 1 with ethyl cyanoacetate. Compound 2 was used as the key intermediate to prepare Schiff bases (3a, b), benzo[c]acridine (4), naphthyl thiopyrimidine (5), and pyrazolo[2,3‐a]‐benzo[h]quinazoline (6) derivatives through its reaction with hydrazines, p‐ansidine, thiourea, and 3,5‐diamino‐4‐phenylazopyrazole, respectively. Base‐catalyzed cyclocondensation of 1 with hippuric acid gives oxazolone derivative (7). Reaction of compound 7 with aniline gave imidazolone derivative (9). Treatment of compound 1 with different types of diaminopyrazoles gave 6,7‐dihydro‐pyrazolo[2,3‐a]‐benzo[h]quinazoline (1013) derivatives. The multicomponent reaction of compound 1 with pyrazolone and malononitrile in the presence of ammonium acetate furnished pyrazolo[3,4‐b]‐benzo[h]quinoline (14) while in the presence of piperidine afforded benzo[h]chromeno[2,3‐c]pyrazole derivative 15.  相似文献   

13.
In one-pot synthesis 2-arylidene-5,6,7,8-tetrahydrothiazolo[3,2-a] cyclopenteno-thieno[2,3-d] pyrimidine-3,5-diones (3) were prepared via the reaction of a ternary mixture of 2-thioxo-1,3,4,5,6,7-hexahydr cyclopentinothieno [2,3-d]-4-one (2), chloroacetic acid and a proper aldehyde. Compound 2 reacted with 3-chloropent-2, 4-dione in ethanolic potassium hydroxide yielding the S-acetyl acetone derivative 5f . The latter compound reacted with hydrazine hydrate and phenyl hydrazine yielded the 2-pyrazolthio derivative 10a, b. Compound 5f also underwent cyclization on heating with acetic acid—pyridine solution to give 11. The 2-methylthio derivative 5a, when treated with hydrogen peroxide gave the corresponding oxidized product 9.  相似文献   

14.
Pyridine-2(1H)-thione derivatives 3a,b were synthesized from the reaction of 1-(phenyl-sulfanyl)acetone (1) and cinnnamonitrile derivatives 2a,b. Compounds 3a,b reacted with different halogenated reagents 7a–f to give 2-S-alkylpyridine derivatives 8a–l, which could be, in turn, cyclized into the corresponding thieno[2,3-b]pyridine derivatives 9a–l. Compounds 9d,j reacted with acetic anhydride, formic acid, carbon disulfide, phenyl isothiocyanate, and nitrous acid to yield the corresponding pyrido[3′,2′:4,5]thieno[2,3-d]pyrimidine 12a,b, 15a,b, 17a,b, 20a,b, and pyrido[3′,2′:4,5]thieno[2,3-d][1,2,3]triazinone derivatives 22a,b, respectively.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

15.
4,5-Diaryl-2,3-dihydro-2-mercaptoimidazoles (2a–e) were synthesized. They reacted with chloroacetic acid in gl. acetic acid/Ac 2 O in presence of anhyd. sodium acetate afforded 5,6-diaryl-2,3-dihydro-imidazo[2,1-b]thiazol-3-ones (3a–d). Also these compounds were prepared by the action of chloroacetyl chloride on compounds (2) in pyridine. Compounds (3a–d) on condensation with aromatic aldehydes yield 2-arylmethylene-5,6-diaryl-2,3-dihydroimidazo[2,1-b]-thiazol-3-ones (4a–q). The latter compounds were prepared directly by the reaction of (2) with chloroacetic acid and the aromatic aldehydes. Compounds (3a–d) coupled with aryldiazonium salts in pyridine to give 2-arylhydrazono-5,6-diaryl-2,3-dihydroimidazo[2,1-b]thiazol-3-ones (5a–r). Also compounds (2) when reacted with 2 or 3-bromopropionic acid afford 2,3-di-hydro-5,6-diaryl-2-methylimidazo[2,1-b]thiazol-3-ones (6a–d) and 2,3-di-hydro-6,7-diaryl imidazo-[2,1-b]-1,3-thiazin-4-ones (7a–d), respectively. Compounds (3, 6, and 7) have been cleaved by aromatic amines to give the corresponding 2-(4′,5′-diaryl-2′,3′-dihydroimidazol-2′-yl)thioacetanilide (8a–f), 2-(2′,3′-dihydro-4′,5′-diaryl imidazol-2′-yl)thiopropionamide (9a–c), and 3-(2′,3′-dihydro-4′,5′-diaryl-imidazol-2′-yl)thiopropionamide (10a–d) respectively. All the prepared compounds show considerable antimicrobial activity against bacteria, yeast, and fungi.  相似文献   

16.
Attempts to chlorosulfonate 1,4-diphenyl-1,3-diazetidin-2-one (1) failed, but the 3-methyl derivative (2) reacted with chlorosulfonic acid to give the bis-sulfonyl chloride (3), characterized as the sulfonamides 4 and 5. 2,3,6-Triphenyl-2,3-dihydro-1,3,5-thiadiazin-4-one (6) with chlorosulfonic acid suffered an acid-catalyzed ring-opening reaction forming the sulfonyl derivatives (8, 9) of N-phenyl-N′-thiobenzoylurea (7). Condensation of 8 and 9 with diethylamine afforded the diethyl-sulfonamide (10). Dibenzylideneethylenediamine (11) reacted with thiobenzoyl isocyanate at room temperature to yield the cycloadduct 12; however at 90°C, N,N′-di (thiobenzoylcarbamoyl)ethylenediamine (13) was obtained. The cycloadduct 12 with chlorosulfonic acid gave the ring-opened disulfonyl chloride 14 and the diethylsulfonamide 15. 1,6-Diphenylhexahydro-s-triazine-2,4-dione (17) was converted into the dimethyl derivative (18), which with chlorosulfonic acid afforded the bis-sulfonyl chloride (19), characterized as the sulfonamides 20–22.

  相似文献   

17.
Abstract

A search for bioactive secondary metabolites from the endophytic fungus Fusarium chlamydosporum, isolated from the root of Suaeda glauca, led to the isolation of three indole derivatives (1–3), three cyclohexadepsipeptides (4–6), and four pyrones (7–10). The structures of new (1) and known compounds (2–10) were elucidated on the basis of extensive spectroscopic analysis. All these compounds were evaluated for phytotoxic, antimicrobial activities, and brine shrimp lethality. Compound 1 showed significant phytotoxic activity against the radicle growth of Echinochloa crusgalli, even better than the positive control of 2,4-D. Cyclohexadepsipeptides (4–6) and pyrones (7–10) exhibited brine shrimp lethality, especially 4 and 7 with the LD50 values of 2.78 and 7.40?μg mL?1, respectively, better than the positive control.  相似文献   

18.
2,5-Bihydrazino-1,3,4-thiadiazole (2) was synthesized by condensation of 2,5-bimercapto-1,3,4-thiadiazole (1) with hydrazine hydrate, and compound 2 reacted with acyl chloride to give 2,5-biacylhydrazino-1,3,4-thiadiazole derivatives (3a–3e). Ring closure of compounds 3a–3e was achieved with POCl3 as the cyclization agent giving 3,6-bisubstituted phenyl-bi-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives (4a–4e), respectively. The novel compounds were identified by elemental analysis, and by infrared (IR), 1H-nuclear magnetic resonance (NMR), and mass (MS) spectrometry. The mechanism of the cyclization is also discussed. __________ Translated from Organic Chemistry, 2006, 26(12): 1720–1722 [译自: 有机化学]  相似文献   

19.
The novel 2-(1H)-pyridone, the lead compound of the pyridone derivative 1, reacted with an electrophilic reagent (ethyl chloroacetate) to give the corresponding ester 2. Condensation of compound 2 with thiosemicarbazide and/or hydrazine hydrate afforded the mercaptotriazole and the corresponding acetic acid hydrazide derivatives 3 and 4, respectively. The latter compound reacted with ethyl acetoacetate, ethyl cyanoacetate, and maleic anhydride to give compounds 5, 6, and 7, respectively. Alkylation of compound 3 with methyl iodide or chloroacetic acid afforded methylsulfanyltriazole and thiazolotriazole derivatives 8 and 9, respectively. Compound 8 reacted with glycine to afford the imidazotriazole derivative 10. Both compounds 9 and 10 reacted with glucose and benzaldehyde to give compounds 11, 12, 13, and 14, respectively. Some of the prepared products were selected and subjected to screening for their antioxidant activity.  相似文献   

20.
Recently, indoles are considered interesting heterocyclic compounds due to their wide range of biological activities such as antimicrobial activity. Herein, some new indole derivatives containing heterocyclic moieties were synthesized using 3-chloro-1H-Indole-2-carbaldehyde (1) as a starting material, then allowed to react with compounds containing active methylene under Knoevenagel condensation and afforded the corresponding compounds (2, 3, 9). Also, the compound (1) when allowed to react with hydrazine derivatives gave the corresponding thiosemiccarbazone, semicarbazone, and hydrazone derivatives (4, 5, 6). Reaction of thiosemicarbazone derivatives with α-halognated carbonyl compounds gave the thiazolyl indole derivatives (10, 12a–b). Cyclic chalcones (11a–c) were obtained when compound (10) reacted with different aromatic aldehydes. The structures of all new synthesized compounds were confirmed on the basis of spectral analysis, IR, 1H NMR, 13C NMR, and MS spectroscopy. All synthesized compounds were evaluated for their antimicrobial activity. Compounds (2, 5, 7, 8, 11a, 12a) showed high antibacterial activity and compounds (3, 6, 9, 10, 11a, 12a) showed high antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号