首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
The technique of proton transfer reaction mass spectrometry (PTR-MS) couples a proton transfer reagent, usually H3O+, with a drift tube and mass spectrometer to determine concentrations of volatile organic compounds. Here we describe a first attempt to use chemical ionization (CI) reagents other than proton transfer species inside a PTR-MS instrument. The ability to switch to other types of CI reagents provides an extra dimension to the technique. This capability is demonstrated by focusing on the ability to distinguish several isobaric aldehydes and ketones, including the atmospherically important molecules methacrolein and methyl vinyl ketone. Two CI reagents were selected, H3O+ and NO+, both being cleanly generated in a low intensity radioactive source prior to injection into the drift tube. By recording spectra with both of these reagents, the contributions from different isobaric molecules can be separated by virtue of their unique spectrometric 'fingerprints'. The work demonstrates that this form of instrumentation is not restricted to proton transfer reagents and is the basis of a more general technique, chemical ionization reaction mass spectrometry (CIRMS).  相似文献   

4.
Using recent developments in proton transfer reaction mass spectrometry, proof-of-principle investigations are reported here to illustrate the capabilities of detecting solid explosives in real-time. Two proton transfer reaction time-of-flight mass spectrometers (Ionicon Analytik) have been used in this study. One has an enhanced mass resolution (m/Δm up to 8000) and high sensitivity (~50 cps/ppbv). The second has enhanced sensitivity (~250 cps/ppbv) whilst still retaining high resolution capabilities (m/Δm up to 2000). Both of these instruments have been successfully used to identify solid explosives (RDX, TNT, HMX, PETN and Semtex A) by analyzing the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces. For the trace measurements a simple pre-concentration and thermal desorption technique was devised and used. Importantly, we demonstrate the unambiguous identification of threat agents in complex chemical environments, where multiple threat agents and interferents may be present, thereby eliminating false positives. This is of considerable benefit to security and for the fight against terrorism.  相似文献   

5.
6.
7.
8.
Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) allows for very fast simultaneous monitoring of volatile organic compounds (VOCs) in complex environments. In several applications, food science and food technology in particular, peaks with very different intensities are present in a single spectrum. For VOCs, the concentrations range from the sub-ppt all the way up to the ppm level. Thus, a large dynamic range is necessary. In particular, high intensity peaks are a problem because for them the linear dependency of the detector signal on VOC concentration is distorted. In this paper we present, test with real data, and discuss a novel method which extends the linearity of PTR-TOF-MS for high intensity peaks far beyond the limit allowed by the usual analytical correction methods such as the so-called Poisson correction. Usually, raw data can be used directly without corrections with an intensity of up to about 0.1 ions/pulse, and the Poisson correction allows the use of peaks with intensities of a few ions/pulse. Our method further extends the linear range by at least one order of magnitude. Although this work originated from the necessity to extend the dynamic range of PTR-TOF-MS instruments in agro-industrial applications, it is by no means limited to this area, and can be implemented wherever dead time corrections are an issue.  相似文献   

9.
10.
11.
12.
13.
A series of isomeric substituted diaryl ethers, i.e., 2- or 4-NO2, 5- FC6H3OC6H4 (4-R), where R=H, COCH3, COOCH3, NO2, CHO, OCH3 etc., which comprise ortho and para isomers with respect to the position of the nitro group are studied under GC-EI-MS and CI-MS conditions. The EI mass spectra of ortho and para isomers show distinct fragment ions, where the [MOH]+ and [MOHO]+ ions specifically appeared in all spectra of the ortho isomers (I), whereas the para isomers (II) contain [MO]+ and [MNO]+ ions. The [MOHCO]+ and [MOHNO]+ ions in I, and [MNO2]+ ion in II are the other specific fragment ions observed but feasibility of these fragment ions are found to depend on the nature of the substituent (R). The substitution (R) effect is also clearly reflected in the formation of fragment ions due to sigma-cleavage process with or without hydrogen migration. Similar differences in the formation of specific fragment ions are also observed in ortho and para isomers of substituted aryl naphthyl ethers. The methane/CI of isomeric compounds resulted in the same set of fragment ions, but prominent differences are observed in the relative abundance of [MHNO]+, which is relatively higher in para isomers compared with corresponding ortho isomer.  相似文献   

14.
Abundant Ag(I)-cationized complexes of 13 polyaromatic hydrocarbons (PAHs), [Ag+PAH](+) and [Ag+2(PAH)](+), were readily generated by electrospray ionization (ESI). In-source collision-induced dissociation (CID) of the [Ag+2(PAH)](+) complex yielded the monomer complex [Ag+PAH](+), which fragmented further to yield the radical molecular ion [PAH](+.). Based on significant differences in relative intensities of [Ag+2(PAH)](+), [Ag+PAH](+) and [PAH](+.), isomeric PAHs can be differentiated. The [PAH](+.)/[Ag+PAH](+) ion intensity ratio was found to increase with decreasing ionization potentials (IPs) of PAHs. The ratio was significantly different for the isomeric PAHs studied over a wide range of PAH concentrations (1.6-100 nmol/mL), and showed good measurement reproducibility; the coefficient of variation of inter-day measurements was in the range 3-12% for four representative PAHs (n = 5). Detection limits for phenanthrene, pyrene, chrysene and benzo[a]pyrene, in the form of the monomer complexes [(107)Ag+PAH](+) and measured in the selected-ion monitoring (SIM) mode, were 0.31, 0.63, 0.16 and 1.25 pmol/5 microl injection, respectively (S/N ratio approximately 2-3).  相似文献   

15.
A real-time automated process control tool for coffee roasting is presented to consistently and accurately achieve a targeted roast degree. It is based on the online monitoring of volatile organic compounds (VOC) in the off-gas of a drum roaster by proton transfer reaction time-of-flight mass spectrometry at a high time (1 Hz) and mass resolution (5,500 m/Δm at full width at half-maximum) and high sensitivity (better than parts per billion by volume). Forty-two roasting experiments were performed with the drum roaster being operated either on a low, medium or high hot-air inlet temperature (= energy input) and the coffee (Arabica from Antigua, Guatemala) being roasted to low, medium or dark roast degrees. A principal component analysis (PCA) discriminated, for each one of the three hot-air inlet temperatures, the roast degree with a resolution of better than ±1 Colorette. The 3D space of the three first principal components was defined based on 23 mass spectral profiles of VOCs and their roast degree at the end point of roasting. This provided a very detailed picture of the evolution of the roasting process and allowed establishment of a predictive model that projects the online-monitored VOC profile of the roaster off-gas in real time onto the PCA space defined by the calibration process and, ultimately, to control the coffee roasting process so as to achieve a target roast degree and a consistent roasting.  相似文献   

16.
The fragmentation mechanisms of three types of brassinosteroids (BRs), 23,24‐tris‐epicastasterone, epicastasterone, tris–epicastasterone, 24‐epibrassinolide and 6‐deoxo‐24‐epicastasterone, have been extensively investigated by tandem mass spectrometry (MSn, n = 1, 2, 3, 4, 5) with the assistance of high mass accuracy quadrupole time‐of‐flight mass spectrometry (QToF MS). The electrospray ionization (ESI) mass spectrometric fragmentation pathways of these five BRs were comprehensively elucidated for the first time. Cleavages of side chains, neutral losses of water or other molecules and opening of a ring induce the main fragmentation patterns. The results from the present study can potentially afford important guidance for the structural elucidation of different BRs and provide some fundamental data for metabolomic analysis of BRs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Isomeric di- and trifunctional aromatic amines are easily differentiated on the basis of their plasma desorption (PD) mass spectra. Six series of aromatic amines were studied in the positive-ion mode. In each series, the differences observed in the PD mass spectra allow each isomer to be characterized. In the formation of molecular ions, these differences proceed from the competition between electron impact ionization and protonation. Several chemoselective or regioselective reactions such as hydrogenation, hydration, dimerization and some fragmentations also allow isomeric aromatic amines to be differentiated.  相似文献   

18.
Shi P  He Q  Song Y  Qu H  Cheng Y 《Analytica chimica acta》2007,598(1):110-118
Flavonoid O-diglycosides are important bioactive compounds from genus Citrus. They often occur as isomers, which makes the structural elucidation difficult. In the present study, the fragmentation behavior of six flavonoid O-diglycosides from genus Citrus was investigated using ion trap mass spectrometry in negative electrospray ionization (ESI) with loop injection. For the flavonoid O-rutinosides, [M − H − 308] ion was typically observed in the MS2 spectrum, suggesting the loss of a rutinose. The fragmentation patterns of flavonoid O-neohesperidosides were more complicated in comparison with their rutinoside analogues. A major difference was found in the [M − H − 120] ion in the MS2 spectrum, which was a common feature of all the flavonoid O-neohesperidosides. The previous literature for naringin located the loss of 120 Da to the glycan part, whereas the present study for naringin had shown that the [M − H − 120] ion was produced by a retro-Diels-Alder reaction in ring C, and this fragmentation pattern was confirmed by the accurate mass measurement using an orthogonal time-of-flight mass spectrometer. Combined with high performance liquid chromatography (HPLC) and diode array detection (DAD), the established approach to the structural identification of flavonoid O-diglycosides by ion trap mass spectrometry was applied to the analysis of extracts of two Chinese medicines derived from genus Citrus, namely Fructus aurantii and F. aurantii immaturus. According to the HPLC retention behavior, the diagnostic UV spectra and the molecular structural information provided by multistage mass spectrometry (MSn) spectra, 13 flavonoid O-glycosides in F. aurantii and 12 flavonoid O-glycosides in F. a. immaturus were identified rapidly.  相似文献   

19.
In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m−3, ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages.  相似文献   

20.
The gastronomic relevance and high price of white truffle are related mainly to its unique aroma. Here we evaluate, for the first time, the possibility of characterizing in a rapid and non-destructive way the aroma of white truffles based on proton transfer reaction mass spectrometry (PTR-MS). We indicate that anonymous PTR-MS fingerprinting allows sample classification and we also compare qualitatively and quantitatively PTR-MS data with measurements made by solid-phase microextraction gas chromatography (SPME-GC) of the same samples under the same conditions. PTR-MS fragmentation data of truffle-relevant compounds are also published here for the first time. Most of the sulfur-containing compounds detected by GC and relevant for white truffle aroma have a high positive correlation with single PTR-MS peaks. Our work indicates that, after preliminary comparison with GC data, PTR-MS is a new tool for the rapid, quantitative and non-invasive characterization of white truffle by direct headspace injection without any pre-concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号