首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray photoelectron spectroscopy and first-principles density-functional calculations were used to study the interaction of thiophene, H(2)S, and S(2) with Ni(2)P(001), alpha-Mo(2)C(001), and polycrystalline MoC. In general, the reactivity of the surfaces increases following the sequence MoC < Ni(2)P(001) < alpha-Mo(2)C(001). At 300 K, thiophene does not adsorb on MoC. In contrast, Ni(2)P(001) and alpha-Mo(2)C(001) can dissociate the molecule easily. The key to establish a catalytic cycle for desulfurization is in the removal of the decomposition products of thiophene (C(x)H(y) fragments and S) from these surfaces. Our experimental and theoretical studies indicate that the rate-determining step in a hydrodesulfurization (HDS) process is the transformation of adsorbed sulfur into gaseous H(2)S. Ni(2)P is a better catalyst for HDS than Mo(2)C or MoC. The P sites in the phosphide play a complex and important role. First, the formation of Ni-P bonds produces a weak "ligand effect" (minor stabilization of the Ni 3d levels and a small Ni --> P charge transfer) that allows a high activity for the dissociation of thiophene and molecular hydrogen. Second, the number of active Ni sites present in the surface decreases due to an "ensemble effect" of P, which prevents the system from deactivation induced by high coverages of strongly bound S. Third, the P sites are not simple spectators and provide moderate bonding to the products of the decomposition of thiophene and the H adatoms necessary for hydrogenation.  相似文献   

2.
Density functional theory calculations have been carried out for hydrogen adsorption on the (001), (110), and (100) surfaces of Fe5C2. At 1/3 and 2/3 monolyer (ML) on (001), the most stable hydrocarbon species is CsH, while CsH and CsH3 can coexist at 1 ML. On (110), only dissociated hydrogen is found at 2/5 ML, while CsH is the most stable hydrogen carbon species at 4/5 ML, and CsH and CH3 coexist at 6/5 ML. On (001) and (110) surfaces, CsH2 is less stable and can dissociate into CsH or convert into CsH3, respectively. These results are in agreement with the experimental observations. On the metallic Fe5C2(100) surface which lacks surface carbon atoms on the surface monolayer, dissociated hydrogen is found at 1/2 ML, while both dissociated hydrogen and activated H2 are found at 1 ML.  相似文献   

3.
The desulfurization of thiophene on Raney Ni and rapidly quenched skeletal Ni (RQ Ni) has been studied in ultrahigh vacuum (UHV) by X-ray photoelectron spectroscopy (XPS). The Raney Ni or RQ Ni can be approximated as a hydrogen-preadsorbed polycrystalline Ni-alumina composite. It is found that thiophene molecularly adsorbs on Raney Ni or RQ Ni at 103 K. At 173 K, thiophene on alumina is desorbed, while thiophene in direct contact with the metallic Ni in Raney Ni undergoes C-S bond scission, leading to carbonaceous species most probably in the metallocycle-like configuration and atomic sulfur. On RQ Ni, the temperature for thiophene dissociation is about 100 K higher than that on Raney Ni. The lower reactivity of RQ Ni toward thiophene is tentatively attributed to lattice expansion of Ni crystallites in RQ Ni due to rapid quenching. The existence of alumina and hydrogen may block the further cracking of the metallocycle-like species on Raney Ni and RQ Ni at higher temperatures, which has been the dominant reaction pathway on Ni single crystals. By 473 K, the C 1s peak has disappeared, leaving nickel sulfide on the surface.  相似文献   

4.
The initial hydrogenations of pyridine on MoP(001) with various hydrogen species are studied using self-consistent periodic density functional theory (DFT). The possible surface hydrogen species are examined by studying interaction of H(2) and H(2)S with the surface, and the results suggest that the rational hydrogen source for pyridine hydrogenations should be surface hydrogen atoms, followed by adsorbed H(2)S and SH. On MoP(001), pyridine has two types of adsorption modes, i.e., side-on and end-on; and the most stable η(5)(N,C(α),C(β),C(β),C(α)) configuration of the side-on mode facilitates the hydrogenation of pyridine. The optimal hydrogenation path of pyridine with surface hydrogen atoms in the Langmuir-Hinshelwood mechanism is the formation of 3-monohydropyridine, followed by producing 3,5-dihydropyridine, in which the two-step hydrogenations take place on the C(β) atoms. When adsorbed H(2)S is considered as the source of hydrogen, slightly higher hydrogenation barriers are always involved, while the energy barriers for hydrogenations involving adsorbed SH are much lower. However, the hydrogenation of pyridine should be suppressed by the adsorption of H(2)S, and the promotion effect of adsorbed SH is limited.  相似文献   

5.
This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O(2), C(2)H(4), SO(2), thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO(2) at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O(2) and perform the 2CO + O(2)→ 2CO(2) reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS(x) catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals.  相似文献   

6.
CO2 chemisorption on the Ni(111), Ni(100), and Ni(110) surfaces was investigated at the level of density functional theory. It was found that the ability of CO2 chemisorption is in the order of Ni(110) > Ni(100) > Ni(111). CO2 has exothermic chemisorption on Ni(110) and endothermic chemisorption on Ni(111), while it is thermally neutral on Ni(100). It is also found that there is no significant lateral interaction between the adsorbed CO2 at 1/4 monolayer (ML) coverage, while there is stronger repulsive interaction at 1/2 ML. On all surfaces, the chemisorbed CO2 is partially negatively charged, indicating the enhanced electron transfer, and the stronger the electron transfer, the stronger the C=O bond elongation. The bonding nature of the adsorbed CO2 on nickel surfaces has been analyzed. The thermodynamics of CO2 dissociative chemisorption, compared with CO and O adsorption, has been discussed, and the thermodynamic preference is in the sequence Ni(100) > Ni(111) > Ni(110).  相似文献   

7.
Density functional theory calculations have been carried out on the CO/H2 coadsorption on the (001), (110), and (100) surfaces of Fe5C2 for the understanding of the Fischer-Tropsch synthesis (FTS) mechanism. The stable surface species changes with the variation of the H2 and CO coverage. Along with dissociated hydrogen and adsorbed CO in 2-, 3-, and 4-fold configurations, methylidyne (C(s)H) (C(s), surface carbon), ketenylidene (C(s)CO), ketenyl (C(s)HCO), ketene (C(s)H2CO), and carbon suboxide (C(s)C2O2) are computed as thermodynamically stable surface species on Fe5C2(001) and Fe5C2(110) containing both surface iron and carbon atoms. These surface carbon species can be considered as the preliminary stages for FTS. On Fe5C2(100) with only iron atoms on the surface layer, the stable surface species is dissociated hydrogen and CO with top and 2-fold configurations. The bonding nature of these adsorbed carbon species has been analyzed.  相似文献   

8.
Density functional theory (DFT) was employed to investigate the behavior of a series of catalysts used in the hydrogen evolution reaction (HER, 2H(+) + 2e(-) --> H(2)). The kinetics of the HER was studied on the [NiFe] hydrogenase, the [Ni(PS3*)(CO)](1)(-) and [Ni(PNP)(2)](2+) complexes, and surfaces such as Ni(111), Pt(111), or Ni(2)P(001). Our results show that the [NiFe] hydrogenase exhibits the highest activity toward the HER, followed by [Ni(PNP)(2)](2+) > Ni(2)P > [Ni(PS3*)(CO)](1)(-) > Pt > Ni in a decreasing sequence. The slow kinetics of the HER on the surfaces is due to the fact that the metal hollow sites bond hydrogen too strongly to allow the facile removal of H(2). In fact, the strong H-Ni interaction on Ni(2)P(001) can lead to poisoning of the highly active sites of the surface, which enhances the rate of the HER and makes it comparable to that of the [NiFe] hydrogenase. In contrast, the promotional effect of H-poisoning on the HER on Pt and Ni surfaces is relatively small. Our calculations suggest that among all of the systems investigated, Ni(2)P should be the best practical catalyst for the HER, combining the high thermostability of the surfaces and high catalytic activity of the [NiFe] hydrogenase. The good behavior of Ni(2)P(001) toward the HER is found to be associated with an ensemble effect, where the number of active Ni sites is decreased due to presence of P, which leads to moderate bonding of the intermediates and products with the surface. In addition, the P sites are not simple spectators and directly participate in the HER.  相似文献   

9.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   

10.
Adsorption and protonation of CO2 on the (110) and (100) surfaces of gamma-Al2O3 have been studied using density functional theory slab calculations. On the dry (110) and (100) surfaces, the O-Al bridge sites were found to be energetically favorable for CO2 adsorption. The adsorbed CO2 was bound in a bidentate configuration across the O-Al bridge sites, forming a carbonate species. The strongest binding with an adsorption energy of 0.80 eV occurs at the O3c-Al5c bridge site of the (100) surface. Dissociation of water across the O-Al bridge sites resulted in partially hydroxylated surfaces, and the dissociation is energetically favorable on both surfaces. Water dissociation on the (110) surface has a barrier of 0.42 eV, but the same process on the (100) surface has no barrier with respect to the isolated water molecule. On the partially hydroxylated gamma-Al2O3 surfaces, a bicarbonate species was formed by protonating the carbonate species with the protons from neighboring hydroxyl groups. The energy difference between the bicarbonate species and the coadsorbed bidentate carbonate species and hydroxyls is only 0.04 eV on the (110) surface, but the difference reaches 0.97 eV on the (100) surface. The activation barrier for forming the bicarbonate species on the (100) surface, 0.42 eV, is also lower than that on the (110) surface (0.53 eV).  相似文献   

11.
The adsorption and reaction of pyridine on the Si(001) and Ge(001) surfaces are investigated by first-principles density-functional calculations within the generalized gradient approximation. On both surfaces the N atom of pyridine initially reacts with the down atom of the dimer, forming a single bond between the N atom and the down atom. On Ge(001) such an adsorption configuration is most favorable, but on Si(001) a further reaction with a neighboring dimer occurs, resulting in formation of a bridge-type configuration. Especially we find that on Ge(001) the bridge-type configuration is less stable than the gas phase. Our results provide an explanation for a subtle difference in the adsorption structures of pyridine on Si(001) and Ge(001), which was observed from recent scanning tunneling microscopy experiments.  相似文献   

12.
Density functional theory was used to study the NH3 behavior on Ni monolayer covered Pt(111) and WC(001). The electronic structure of the surfaces, and the adsorption and decomposition of NH3 were calculated and compared. Ni atoms in the monolayer behave different from that in Ni(111). More dz2 electrons of Ni in monolayer covered systems were shifted to other regions compared to Ni(111), charge density depletion on this orbital is crucial to NH3 adsorption. NH3 binds more stable on Ni/Pt(111) and Ni/WC(001) than on Ni(111), the energy barriers of the first N-H bond scission were evidently lower on Ni/Pt(111) and Ni/WC(001) than on Ni(111), these are significant to NH3 decomposition. N recombination is the rate-limiting step, high reaction barrier implies that N2 is produced only at high temperatures. Although WC has similar properties to Pt, differences of the electronic structure and catalytic activities are observed for Ni/Pt(111) and Ni/WC(001), the energy barrier for the rate-determined step increases on Ni/WC(001) instead of decreasing on Ni/Pt(111) when compared to Ni(111). To design cheaper and better catalysts, reducing the N recombination barrier by modifying Ni/WC(001) is a critical question to be solved.  相似文献   

13.
The reactivity of the Ti(8)C(12)(+) met-car cation toward thiophene was investigated using density functional theory (DFT) and mass selective ion chemistry. It is shown that the experimentally observed mass spectrum can be well described by the DFT calculations. In contrast to the weak bonding interactions seen for thiophene on a TiC(001) surface, the Ti(8)C(12)(+) met-car cation is able to interact strongly with up to four thiophene molecules with the cluster staying intact. In the most stable conformation, the thiophene molecules bond to the four low-coordinated Ti(0) sites of Ti(8)C(12)(+) via a eta(5)-C,S coordination. The stability and the activity of the Ti(8)C(12)(+) met-car is observed to increase with an increasing number of attached thiophene molecules at the Ti(0) sites, which is associated with a significant transfer of electron density from thiophene to the cluster. The additional electron density on the Ti(8)C(12)(+) cation cluster, however, is not sufficient to cleave the C-S bonds of thiophene and the dissociation reaction of thiophene is predicted to be a highly activated process. By contrast, DFT calculations for the neutral Ti(8)C(12) met-car predict that the dissociation reaction leading to adsorbed S and C(4)H(4) fragments is energetically favorable for the first thiophene molecule. The binding behavior for subsequent addition of thiophene molecules to the neutral met-car is also presented and compared to that of the cation.  相似文献   

14.
以氧化镧催化剂在甲烷氧化偶联(OCM)反应中的结构敏感性实验研究为基础, 采用周期性密度泛函理论(DFT)计算研究氧化镧(001), (110)和(100)3个晶面及OCM反应物分子甲烷和氧在其上的吸附、 活化和解离. 结果表明, 氧化镧(001), (110)和(100)3个晶面的表面能大小顺序为(110)>(100)>(001), 3个晶面的价带和导带间隙大小顺序为(110)<(100)<(001), 即(001)是3个晶面中最稳定的晶面, 而(110)则是最活泼的晶面. 甲烷分子在氧化镧(001), (110)和(100)晶面上的吸附很弱(0.03 eV), H—CH3解离吸附能分别为2.16, 0.68和0.90 eV, 解离反应的难易性与晶面的活性顺序一致; 而氧分子在氧化镧(001), (110)和(100)晶面上的分子吸附能分别为-0.04, -0.31和-0.12 eV, 解离吸附能分别为1.22, 0.53和1.52 eV, 即氧化镧晶面结构对氧分子吸附具有明显的影响, 其中, (001)晶面上吸附最弱, (110)晶面上吸附最强, 以致O—O在(110)晶面上可以较低能垒(0.53 eV)解离, 形成亲电的过氧物种. 由于氧分子在氧化镧表面的吸附较甲烷分子强, 因此, 氧化镧在OCM反应中结构敏感性应与氧分子的吸附和活化密切相关. 甲烷和氧分子在氧化镧表面上活化的本质源自于电子自表面流向甲烷和氧分子的反键轨道, 且表面结构的改变会导致不同强度的电子流动驱动.  相似文献   

15.
Using the plane-wave pseudopotential method within the density-functional theory with the generalized gradient approximation for exchange and correlation potential, we have calculated adsorption energies (E(ad)), diffusion barrier, and the first dissociation barrier (E(1)) for NH(3) on Ni and Pd surfaces. While the top site is found to be preferred for NH(3) adsorption on both Ni(111) and Pd(111), its calculated diffusion barrier is substantially higher for Pd(111) than for Ni(111). We also find that during the first dissociation step (NH(3)-->NH(2)+H), NH(2) moves from the top site to the nearest hollow site on Ni(111) and Pd(111) and on the stepped surfaces, Ni(211) and Pd(211), it moves from the initial top site at the step edge to the bridge site in the same atomic chain. Meanwhile H is found to occupy the hollow sites on all four surfaces. On Ni(111), E(1) is found to be 0.23 eV higher than E(ad), while at the step of Ni(211), E(1) and E(ad) are almost equal, suggesting that the probability for the molecule to dissociate is much on the step of Ni(211). In the case of Pd(211), however, we find that the dissociation barrier is much higher than E(ad). These trends are in qualitative agreement with the experimental finding that ammonia decomposition rate is much lower on Pd than on Ni.  相似文献   

16.
The angular distribution of desorbing N(2) was studied in both the thermal decomposition of N(2)O(a) on Rh(100) at 60-140 K and the steady-state NO (or N(2)O) + D(2) reaction on Rh(100) and Rh(110) at 280-900 K. In the former, N(2) desorption shows two peaks at around 85 and 110 K. At low N(2)O coverage, the desorption at 85 K collimates at about 66 degrees off normal towards the [001] direction, whereas at high coverage, it sharply collimates along the surface normal. In the NO reduction on Rh(100), the N(2) desorption preferentially collimates at around 71 degrees off normal towards the [001] direction below about 700 K, whereas it collimates predominantly along the surface normal at higher temperatures. At lower temperatures, the surface nitrogen removal in the NO reduction is due to the process of NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a). On the other hand, in the steady-state N(2)O + D(2) reaction on Rh(110), the N(2) desorption collimates closely along the [001] direction (close to the surface parallel) below 340 K and shifts to ca. 65 degrees off normal at higher temperatures. In the reduction with CO, the N(2) desorption collimates along around 65 degrees off normal towards the [001] direction above 520 K, and shifts to 45 degrees at 445 K with decreasing surface temperature. It is proposed that N(2)O is oriented along the [001] direction on both surfaces before dissociation and the emitted N(2) is not scattered by adsorbed hydrogen.  相似文献   

17.
《Chemical physics letters》1986,129(2):130-134
Carbon monoxide adsorbed on Al-promoted Ni and Cu surfaces undergoes facile dissociation at 300 K or below. CO adsorbed on an Al-promoted Ni surface shows a larger separation (3.5 eV) between the 5σ and 4σ levels compared to that on a clean Ni surface (3.0 eV), besides exhibiting a low C-O stretching frequency. CO adsorbed on an Al-promoted Cu surface shows a similar large 5σ-4σ separation; this is accompanied by the disappearance of the satellites in the valence band and O(1s) regions. These features of CO adsorbed on Al-promoted Ni and Cu surfaces characterize the precursor to dissociation. Molecular orbital calculations suggest that CO bonds parallel to the Al-promnoted Cu surface.  相似文献   

18.
The interfacial properties for a carbon nanotube on a Ni (001) surface are modeled by a piece of vertical graphene standing on a Ni (001) surface. The interaction between the graphene and the nickel (001) surface is investigated using density functional theory (DFT) calculations. Zigzag type graphene can stand on the hollow sites of the Ni (001) surface along the [linear span]110[linear span] direction. For such a configuration, Ni (001)-graphene interfacial mechanical properties are studied, and we find that Ni-Ni bonds near the interface will break first under tensile strain. C-C bond lengths near the interface are longer than the C-C bonds of graphene, and the charge density of those bonds decrease due to the formation of interfacial Ni-C bonds. It suggests that C-C bonds near the interface may break during the carbon nanotube growth processes.  相似文献   

19.
This work presents a detailed experimental and theoretical study of the oxidation of TiN(001) using a combination of synchrotron-based photoemission and density functional theory (DFT). Experimentally, the adsorption of O2 on TiN(001) was investigated at temperatures between 250 and 450 K. At the lowest temperature, there was chemisorption of oxygen (O(2,gas)-->2O(ads)) without significant surface oxidation. In contrast, at 450 K the amount of O2 adsorbed increased continuously, there was no evidence for an oxygen saturation coverage, a clear signal in the Ti 2p core level spectra denoted the presence of TiOx species, and desorption of both N2 and NO was detected. The DFT calculations show that the adsorption/dissociation of O2 is highly exothermic on a TiN(001) substrate and is carried out mainly by the Ti centers. A high oxygen coverage (larger than 0.5 ML) may induce some structural reconstructions of the surface. The exchange of a surface N atom by an O adatom is a highly endothermic process (DeltaE=2.84 eV). However, the overall oxidation of the surface layer is thermodynamically favored due to the energy released by the dissociative adsorption of O2 and the formation of N2 or NO. Both experimental and theoretical results lead to conclude that a TiN+mO2 -->TiOx + NO reaction is an important exit channel for nitrogen in the oxidation process.  相似文献   

20.
The adsorption of N2O on W(110) and Ru(001) has been investigated by means of XPS and UPS including some angle-dependent measurements. Besides dissociation, molecular N2O states were observed, which could be identified to be physisorbed horizontally. On Ru(001), an additional weakly chemisorbed state can coexist which is vertically adsorbed via its terminal N atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号