共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/2 → 6H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors. 相似文献
2.
Hemam Jenee Devi Wairokpam Rameshwor Singh Romeo Singh Loitongbam 《Journal of fluorescence》2016,26(3):875-889
Rare earth elements (RE = Eu3+& Dy3+)and Bi3+ doped Y2O3 nanoparticles were synthesized by urea hydrolysis method in ethylene glycol, which acts as reaction medium as well as a capping agent, at a low temperature of 140 °C,followed by calcination of the obtained product. Transmission electron microscope (TEM) images reveals that ovoid shaped Y2O3 nanoparticles of around 22–24 nm size range were obtained in this method. The respective RE and Bi3+ doped Y2O3 precursor nanoparticles when heated at 600 and 750 °C, retains the same shape as that of the as-synthesized Y2O3 precursor samples. From EDAX spectra, the incorporation of RE ions into the host has been studied. XRD pattern reveals the crystalline nature of the heated nanoparticles and indicate the absence of any impurity phase other than cubic Y2O3.However, the as-synthesized nanoparticles were highly amorphous without the presence of any sharp XRD peaks. Photoluminescence study suggests that the synthesized samples could be used as red (Eu3+), yellow (Dy3+), blue and green (Bi3+)emitting phosphors. 相似文献
3.
Bin Dong BaoSheng Cao ZhiQing Feng XingJun Wang ChengRen Li RuiNian Hua 《中国科学G辑(英文版)》2009,52(7):1043-1046
The Er3+-Yb3+ codoped Al2O3 nanoparticles with an average particle size of about 50 nm have been synthesized by an arc discharge synthesis method. The
green and red up-conversion emissions centered at about 526, 547 and 677 nm, corresponding respectively to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+, were detected by a 978-nm semiconductor laser diode excitation. The Annealing has evident effect on the up-conversion emissions
of the samples: The red up-conversion emission is noticeable before annealing; however, the green up-conversion emission becomes
predominant after annealing. The mixture of (Er,Yb)3Al5O12 and α-(Al,Er,Yb)2O3 phases is more favorable for green up-conversion emissions due to an enhancement of the ESA (I) of 4I11/2+a photon→4F7/2 and ET (III) of 2F5/2(Yb3+)+4I11/2(Er3+)→2F7/2(Yb3+)+4F7/2(Er3+) processes. The two-photon absorption up-conversion process is involved in the green and red up-conversion emissions. The
results have proved that arc discharge synthesis is a new promising preparation technology for optical materials.
Supported by National Natural Science Foundation of China (Grant No. 10804015), the Scientific Research Foundation for Doctor
of Liaoning Province (Grant No. 20071095), and the Educational Committee Foundation of Liaoning Province (Grant No. 2008123) 相似文献
4.
Cathode material LiMn2O4 nanorod was prepared by annealing of the mixed precursor which was synthesized by low heating solid state coordination method using lithium acetate, manganese acetate and oxalic acid as starting materials. The structures and morphologies of the LiMn2O4 nanorod were investigated as a function of annealing temperature and time. The results showed that all samples in different annealing temperatures and time have the same spinel structure. The higher the annealing temperature is, the more complete the crystal structure forms, and the larger the particle size is. In addition, the electrochemical properties of the LiMn2O4nanorod were studied in this paper. 相似文献
5.
The Dy3+ and Eu3+ activated K3Al2 (PO4)3 phosphors were prepared by a combustion synthesis. From a powder X-ray diffraction (XRD) analysis the formation of K3Al2 (PO4)3 was confirmed. In the photoluminescence emission spectra, the K3Al2(PO4)3:Dy3+ phosphor emits two distinctive colors: blue and yellow whereas K3Al2(PO4)3:Eu3+ emits red color. Thus the combination of colors gives BYR (blue–yellow–red) emissions can produce white light. These phosphors
exhibit a strong absorption between 340 and 400 nm which suggest that present phosphor is a promising candidate for producing
white light-emitting diodes (LED). 相似文献
6.
7.
The mechanism of the upconversion processes in Y6O5F8: 2%Er3+/X%Yb3+ (X = 3, 10, 20) microtubes has been explored. The luminescent properties of the as prepared sample is investigated by utilizing up- /downconversion, decay and time resolve spectra. The results indicate that the red and green emission are clearly competitive depending on the Yb3+ concentration. High Yb3+ concentration induces the enhancement of the energy-back-transfer (EBT), process, which leads to the quenching of green emission and enhances the red emission. So it is possible to utilize the temporal evolutions of emission bands to deeply understand the color change UC mechanisms. 相似文献
8.
The high efficient antireflective down-conversion Y2O3:Bi, Yb films have been prepared successfully on Si(100) substrates by pulsed laser deposition (PLD) method, Upon excitation of ultraviolet photon varying from 300 to 400 nm, near-infrared emission of Yb3+ was observed for the film, can be efficiently absorbed by silicon (Si) solar cell. Most interestingly, there is a very low average reflectivity 1.46% for the incident light from 300 to 1100 nm. To the best of our knowledge, this is the lowest reflectance for the down-conversion thin films prepared by cost efficient method. The surface topography of the high efficient antireflective films can be controllably tuned through the substrate template regulation by optimizing process parameters. Besides, the results showed that there is a close relationship between luminescent property and morphology of the film. With the change of the surface morphology, the intensity of Bi3+ and Yb3+ emission peaks increase first and then decrease. The obtained results demonstrate that this film can enhance the Si solar cell efficiency through light trapping and spectrum shifting. 相似文献
9.
Yb3+-Tm3+ co-doped up-conversion powder phosphors using Zn(AlxGa1-x)2O4 (ZAGO) as the host materials were synthesized via solid-state reaction successfully. In addition, the morphology, structural characterization and up-conversion luminescent properties were all investigated by scanning electron microscope (SEM), x-ray diffraction (XRD) and fluorescence spectrophotometer (F-7000), respectively. Under the excitation of a 980 nm laser, all as-prepared powders can carry out blue emission at about 477 nm (corresponding to 1G4 → 3H6 transition of Tm3+ ions), and red emission at about 691 nm (attributed to 3F3 → 3H6 transition of Tm3+ ions). Also, the influence of doping Al3+ ions were investigated. In brief, the doping of Al3+ ions has no effect on the position of emission peak. Howbeit the up-conversion efficiency and intensity of ZAGO:Yb,Tm phosphors are stronger than ZGO:Yb,Tm and ZAO:Yb,Tm phosphors, while the crystallinity is the opposite. More particularly, all as-prepared powder phosphors emit strong luminescence, which is observable by the naked eye, demonstrating the potential applications in luminous paint, luminescent dye, etc. 相似文献
10.
1 at % Pr3+-doped Y2O3 single-crystal fibers were prepared using a laser-heated pedestal growth method. The emission and excitation spectra of the
fibers were measured. The emissions of 4f-4f transitions from 1
D
2 to the 3
H
4 and 3
H
5 states are found at 620 and 720 nm, respectively. The 3
P
2, 3
P
1, 1
I
6, and 3
P
0 4f-4f absorptions are observed at 456, 472, 482, and 492 nm, respectively. A 4f-5d absorption band is detected at 288 nm. Photoconductivity measurements show that the 4f-5f transition of Pr3+ around 285 nm produces a direct photocurrent. Taking the onset of photocurrent to be at 320 nm, the ground state of Pr3+ is determined at 1.7 eV above the valence band of the host.
The text was submitted by the authors in English. 相似文献
11.
The crystal of Nd3+:Sr6YSc(BO3)6 with dimensions of O 19×42 mm3 was grown by the Czochralski method. It’s spectral and laser properties have been investigated. The absorption cross section
is 1.47×10-20 cm2 with a FWHM 12.0 nm at 807 nm, the emission cross section is 1.57×10-19 cm2 at 1060 nm, and the fluorescence lifetime is 76 μs at room temperature. The maximum laser output is 25.7 mJ at 1.06 μm pumped
by a single Xenon flash lamp and the overall and average slope efficiencies are 0.12% and 0.09%, respectively. The laser energy
threshold value is 1.28 J.
PACS 42.55.Rz; 42.70.Hj; 78.20.-e 相似文献
12.
A. V. Sidorenko P. A. Rodnyi O. Guillot-Noel D. Gourier C. W. E. van Eijk 《Physics of the Solid State》2003,45(9):1676-1678
ESR spectra of Ce3+ ions in polycrystalline Sr2B5O9Br were studied, and the two crystallographic positions of the Ce3+ ion in this compound were identified on the basis of the data obtained. The ESR spectrum of Ce3+ ions with local charge compensation contains a broad line indicating the existence of several types of charge compensation. ESR spectra of Ce3+ ions in samples activated additionally by K+ ions are similar to those of the regular Ce3+ centers, which indicates that the effect of the univalent cation on Ce3+ is negligible. 相似文献
13.
K.?Koyasu M.?Niemietz W.?Westh?user G.?Gantef?r 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2009,53(1):59-62
The decay path of an Ag8(O2)- cluster photoexcited by a 3.1 eV photon is elucidated using time-resolved photoelectron spectroscopy. Photoabsorption results
in the formation of an excited state giving rise to a peak in the photoelectron spectra with well-resolved vibrational finestructure.
With a lifetime of about 100 fs this bound state decays into an anti-bonding state which dissociates into O2 and Ag8- on a timescale of 10 ps. In the photoelectron spectra, this corresponds to a broad maximum shifting gradually towards higher
binding energy while the O2 and Ag8- separate. Finally, the spectrum of bare Ag8- appears. This process is unique to small clusters, because on metal surfaces excited state lifetimes are too short to allow
for direct dissociation. 相似文献
14.
de Moura AP de Oliveira LH Paris EC Li MS Andrés J Varela JA Longo E Rosa IL 《Journal of fluorescence》2011,21(4):1431-1438
Nanorods and nanoplates of Y2O3:Eu3+ powders were synthesized through the thermal decomposition of the Y(OH)3 precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction,
field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on
these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm
ascribed to the photoluminescence of Y2O3 matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y2O3:Eu3+ samples. The presence of Eu3+ and the hydrothermal treatment time are responsible for the band shifts in Y2O3:Eu3+ powders, since in the pure Y2O3 matrix this behavior was not observed. Y2O3:Eu3+ powders also show the characteristic Eu3+ emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for
the Eu3+ red emission in these materials, and the Eu3+ lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases. 相似文献
15.
M. G. Nikolic M. S. Rabasovic J. Krizan S. Savic-Sevic M. D. Rabasovic B. P. Marinkovic A. Vlasic D. Sevic 《Optical and Quantum Electronics》2018,50(6):258
In this paper we study the possibility of using the synthesized nanopowder samples of Gd2Zr2O7:Eu3+ for temperature measurements by analyzing the temperature effects on its photoluminescence. The nanopowder was prepared by solution combustion synthesis method. The photoluminescence spectra used for analysis of Gd2Zr2O7:Eu3+ nano phosphor optical emission temperature dependence were acquired using continuous laser diode excitation at 405 nm. The temperature dependencies of line emission intensities of transitions from 5D0 and 5D1 energy levels to the ground state were analyzed. Based on this analysis we use the two lines intensity ratio method for temperature sensing. Our results show that the synthesized material can be efficiently used as thermographic phosphor up to 650 K. 相似文献
16.
The electron paramagnetic resonance (EPR) spectra of Ce3+ and Nd3+ impurity ions in unoriented powders of the YBa2Cu3O6.13 compound are observed and interpreted for the first time. It is demonstrated that, upon long-term storage of the samples
at room temperature, the EPR signals of these ions are masked by the spectral line (with the g factor of approximately 2) associated with the intrinsic magnetic centers due to the significant increase in its intensity. 相似文献
17.
Ho3+–Yb3+ co-doped Y2O3 nanocrystals were synthesized by firing hydroxy carbonate precursors. Yb3+-concentration-dependent up-conversion properties of Ho3+ in Y2O3 nanocrystals have been investigated. The relative intensity of up-converted red emission increases more quickly than that of the green and the near-infrared ones with the enhancement of the concentration of Yb3+. It is believed that the energy process 5
S
2 (5F4) (Ho) + 5
I
7 (Ho) →5
I
6 (Ho)+5
F
5 (Ho) plays an important role in the population of the 5
F
5 level of Ho3+. The result indicates that the intensity ratio of the green emission to the red one can be tuned by changing the sensitizer concentration. PACS 78.55.-m 相似文献
18.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω
t
are Ω
2=5.321×10−20 cm2,Ω
4=1.734×10−20 cm2,Ω
6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β
1=36.03%,β
2=52.29%,β
3=11.15%,β
4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2. 相似文献
19.
In flame spray pyrolysis (FSP), the generation of uniform nanoparticles can be quite challenging due to difficulties in controlling droplet sizes during liquid spraying and uneven flame temperature. Here, we report a method to produce relatively uniform nanocrystals of a Tb3+ doped Y2O3 phosphor. In ethanol, metal nitrate precursors were simply mixed with organic surfactants to form a homogeneous solution which was then subjected to FSP. Depending on relative concentrations of the surfactant (oleic acid) to the metal precursors (yttrium and terbium nitrates), different sizes and morphologies of Y2O3:Tb3+ particles were obtained. By adjusting the surfactant concentration, Y2O3:Tb3+ crystals as small as 20~25 nm were acquired. X-ray diffraction and transmittance electron microscopy were used to prove that as-synthesized nanoparticles were highly crystalline due to the high temperature of FSP. X-ray photoelectron spectroscopy revealed that terbium dopants were well distributed throughout Y2O3 particles and a small portion of carbonate impurities were remained on the surface of particles, presumably originated from incomplete combustion of the organic surfactants. Photoluminescence (PL) spectra of Y2O3:Tb3+ nanocrystals exhibited a green light emission ensuring that the terbium doping was successfully occurred. However, when post-annealing was performed on the nanocrystals, their PL was dramatically enhanced indicating that quenching centers such as carbonate impurities and surface defects may have been removed by the annealing process. Owing to the continuous processability of FSP, this current method can be a practical way to produce nanoparticles in a large quantity. The obtained Y2O3:Tb3+ nanocrystals were used to fabricate a transparent film with poly-ethylene-co-vinyl acetate (poly-EVA) polymer, which was suitable for a spectral converting layer for a solar cell. 相似文献
20.
V. V. Bakovets I. V. Yushina O. V. Antonova T. A. Pomelova 《Optics and Spectroscopy》2016,121(6):862-866
Submicron samples of Y2O3:Eu3+ phosphor with elevated photoluminescence (PL) efficiency and activator concentration of 9 at % obtained by the sol–gel method were investigated by diffuse reflection spectroscopy and PL spectroscopy. It is found that the diffuse reflection spectrum in the vicinity of the fundamental absorption edge (<300 nm) is distorted by the superposition of the PL of Eu3+ ions, as a result of which the calculated value of optical band gap E g of the Y2O3 matrix is overestimated. An algorithm for eliminating the PL influence on the absorption edge is proposed, and the correct E g values are found to be 4.61 ± 0.12 and 4.50 ± 0.12 eV for annealing at 700 and 1300°C, respectively. 相似文献