首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Salinity is one of the major abiotic stresses limiting crop growth and productivity worldwide. Salt stress during germination degenerates crop establishment and declines yield in wheat, therefore alleviating the damage of salt stress to wheat seedlings is crucial. Chitooligosaccharide (COS) was grafted with γ-aminobutyric acid based on the idea of bioactive molecular splicing, and the differences in salt resistance before and after grafting were compared. The expected derivative was successfully synthesized and exhibited better salt resistance-inducing activity than the raw materials. By activating antioxidant enzymes such as superoxide dismutases (SOD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) and subsequently eliminating reactive oxygen species (ROS) in a timely manner, the rate of O2 production and H2O2 content of wheat seedlings were reduced, and the dynamic balance of free radical metabolism in the plant body was maintained. A significantly reduced MDA content, reduced relative permeability of the cell membrane, and decreased degree of damage to the cell membrane were observed. A significant increase in the content of soluble sugar, maintenance of osmotic regulation and the stability of the cell membrane structure, effective reduction in the salt stress-induced damage to wheat, and the induction of wheat seedling growth were also observed, thereby improving the salt tolerance of wheat seedlings.  相似文献   

2.
Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.  相似文献   

3.
The influences of non-thermal discharge plasma treatment on wheat seed germination and seedling growth were investigated using a dielectric barrier discharge (DBD) plasma system at atmospheric pressure and room temperature. DBD plasma with various gas sources (oxygen, air, argon, and nitrogen) was employed in this study. Germination characteristics, seedling growth parameters, surface changes of the seed coat, permeability, and soluble protein of the seedlings were measured after the DBD plasma treatments. The experimental results showed that moderate-intensity DBD plasma had active impacts on wheat seed germination and seedling growth. Germination potential significantly increased by 24.0, 28.0, and 35.5% after 4 min of the air plasma, nitrogen plasma, and argon plasma treatments, respectively, compared with the control; and the shoot and root length also increased; however, no enhancement was observed after the oxygen plasma treatment. Scanning electron microscope analysis showed that etching effects on the seed coat occurred after the air plasma, nitrogen plasma, and argon plasma treatments, which affected the hygroscopicity and permeability of the wheat seed. In addition, moderate-intensity DBD plasma could also activate several physiological reactions in wheat seed, resulting in the increase of soluble protein production in wheat seedlings.  相似文献   

4.
5.
Salinity toxicity is a worldwide agricultural and eco-environmental problem. Many literatures show that arbuscular mycorrhizal fungi (AMF) can enhance salt tolerance of many plants and some physiological changes occurred in AM symbiosis under salt stress. However, the role of ROS-scavenging enzymes in AM tomato is still unknown in continuous salt stress. This study investigated the effect of Glomus mosseae on tomato growth, cell membrane osmosis and examined the antioxidants (superoxide-dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; peroxidase, POD) responses in roots of mycorrhizal tomato and control under different NaCl stress for 40 days in potted culture. NaCl solution (0, 0.5 and 1%) was added to organic soil in the irrigation water after 45 days inoculated by AMF (Glomus mosseae). (1) AMF inoculation improved tomato growth under salt or saltless condition and reduced cell membrane osmosis, MDA (malonaldehyde) content in salinity. So the salt tolerance of tomato was enhanced by AMF; (2) SOD, APX and POD activity in roots of AM symbiosis were significantly higher than corresponding non-AM plants in salinity or saltless condition. However, CAT activity was transiently induced by AMF and then suppressed to a level similar with non-AM seedlings; (3) higher salinity (1% level) and long stress time suppressed the effect of AMF on SOD, APX, POD and CAT activity; (4) this research suggested that the enhanced salt tolerance in AM symbiosis was mainly related with the elevated SOD, POD and APX activity by AMF which degraded more reactive oxygen species and so alleviated the cell membrane damages under salt stress. Whereas, the elevated SOD, POD and APX activity due to AMF depended on salinity environment.  相似文献   

6.
Bacteria that surround plant roots and exert beneficial effects on plant growth are known as plant growth-promoting rhizobacteria (PGPR). In addition to the plant growth-promotion, PGPR also imparts resistance against salinity and oxidative stress and needs to be studied. Such PGPR can function as dynamic bioinoculants under salinity conditions. The present study reports the isolation of phytase positive multifarious Klebsiella variicola SURYA6 isolated from wheat rhizosphere in Kolhapur, India. The isolate produced various plant growth-promoting (PGP), salinity ameliorating, and antioxidant traits. It produced organic acid, yielded a higher phosphorous solubilization index (9.3), maximum phytase activity (376.67 ± 2.77 U/mL), and copious amounts of siderophore (79.0%). The isolate also produced salt ameliorating traits such as indole acetic acid (78.45 ± 1.9 µg/mL), 1 aminocyclopropane-1-carboxylate deaminase (0.991 M/mg/h), and exopolysaccharides (32.2 ± 1.2 g/L). In addition to these, the isolate also produced higher activities of antioxidant enzymes like superoxide dismutase (13.86 IU/mg protein), catalase (0.053 IU/mg protein), and glutathione oxidase (22.12 µg/mg protein) at various salt levels. The isolate exhibited optimum growth and maximum secretion of these metabolites during the log-phase growth. It exhibited sensitivity to a wide range of antibiotics and did not produce hemolysis on blood agar, indicative of its non-pathogenic nature. The potential of K. variicola to produce copious amounts of various PGP, salt ameliorating, and antioxidant metabolites make it a potential bioinoculant for salinity stress management.  相似文献   

7.
Salinity is one of the most common abiotic stresses encountered by plants. Reversible protein phosphorylation is involved in plant defense processes against salinity stress. Here, we performed global phosphopeptide mapping through enrichment by our synthesized PVA‐phosphate‐Ti4+ IMAC coupled with subsequent identification by ESI‐Q‐TOF MS. A total of 104 peptide sequences containing 139 phosphorylation sites were determined from 70 phosphoproteins of the control leaves. In contrast, 124 phosphopeptides containing 143 phosphorylated sites from 92 phosphoproteins were identified in salt‐stressed maize leaves. Compared with the control, 47 proteins were phosphorylated, 25 were dephosphorylated, and 45 overlapped. Among the 72 differential phosphoproteins, 35 were known salt stress response proteins and the rest had not been reported in the literature. To dissect the differential phosphorylation, gene ontology annotations were retrieved for the differential phosphoproteins. The results revealed that cell signaling pathway members such as calmodulin and 14‐3‐3 proteins were regulated in response to 24‐h salt stress. Multiple putative salt‐responsive phosphoproteins seem to be involved in the regulation of photosynthesis‐related processes. These results may help to understand the salt‐inducible phosphorylation processes of maize leaves.  相似文献   

8.
We isolated and examined two endophytic fungi for their potential to secrete phytohormones viz. gibberellins (GAs) and indoleacetic acid (IAA) and mitigate abiotic stresses like salinity and drought. The endophytic fungi Phoma glomerata LWL2 and Penicillium sp. LWL3 significantly promoted the shoot and allied growth attributes of GAs-deficient dwarf mutant Waito-C and Dongjin-beyo rice. Analysis of the pure cultures of these endophytic fungi showed biologically active GAs (GA1, GA3, GA4 and GA7) in various quantities. The cultures of P. glomerata and Penicillium sp. also contained IAA. The culture application and endophytic-association with host-cucumber plants significantly increased the plant biomass and related growth parameters under sodium chloride and polyethylene glycol induced salinity and drought stress as compared to control plants. The endophytic symbiosis resulted in significantly higher assimilation of essential nutrients like potassium, calcium and magnesium as compared to control plants during salinity stress. Endophytic-association reduced the sodium toxicity and promoted the host-benefit ratio in cucumber plants as compared to non-inoculated control plants. The symbiotic-association mitigated stress by compromising the activities of reduced glutathione, catalase, peroxidase and polyphenol oxidase. Under stress conditions, the endophyte-infection significantly modulated stress through down-regulated abscisic acid, altered jasmonic acid, and elevated salicylic acid contents as compared to control. In conclusion, the two endophytes significantly reprogrammed the growth of host plants during stress conditions.  相似文献   

9.
Climate changes in coastal regions cause increased soil salinity, a well-known type of environmental stress for a high number of agricultural crop species, including Brassicaceae, whose growth and development, and consequently the crop quality and yield, are affected by salinity stress. The aim of the present study is to investigate the effect of salt stress on micro- and macro-element homeostasis in different Brassica crops. Kale (Brassica oleracea var. acephala), white cabbage (B. oleracea var. capitata) and Chinese cabbage (B. rapa ssp. pekinensis) were grown hydroponically and treated with 200 mmol/L sodium chloride for 24 h to mimic short-term salt stress. The contents of Al, Ca, K, Mg, Na, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn were determined in the roots and leaves of the salt-treated plants and corresponding controls by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. While Al, Ca, K, Mg and Na were determined in the mg/g range, the contents of the other elements were found at the µg/g level. A statistical analysis of the obtained data showed that the applied salt treatment significantly influenced the single-element contents in different plant parts. The major elements Ca, K and Mg were mainly unaffected in the more-salt-tolerant kale and white cabbage under salinity stress, while K and Mg were significantly decreased in the more-sensitive Chinese cabbage. The levels of micro-elements were found to be species/variety specific. In general, potentially toxic elements were accumulated in the roots of salt-treated plants to a higher extent than in the corresponding controls.  相似文献   

10.
In order to investigate the influence of genetic background on salt tolerance in soybean (Glycine max), ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) released in India, were selected and grown hydroponically. The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and random amplified polymorphic DNA (RAPD) analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes; however, the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20, while minimum reduction was shown by genotype Pusa-37, followed by BRAGG and PK-1042. Pusa-16, Pusa-22, Pusa-40, and DS-9712 were able to tolerate NaCl treatment up to the level of 75 Mm. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na+ and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted by plant physiological measures. Twenty RAPD primers revealed high polymorphism and genetic variation among ten soybean genotypes studied. The closer varieties in the cluster behaved similarly in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the ten genotypes in sub-cluster as expected from their physiological findings. Our study shows that RAPD technique is a sensitive, precise, and efficient tool for genomic analysis in soybean genotypes.  相似文献   

11.
In this study, growth and osmolyte concentration in the leaves of halophyte, Sesuvium portulacastrum, were studied with respect to salinity. Therefore, the changes in shoot growth, leaf tissue water content, osmolyte concentration (proline content, glycine betaine) and antioxidant enzymes [polyphenol oxidase (PPO), superoxide dismutase (SOD) and catalase (CAT)] were investigated. The 30-day old S. portulacastrum plants were subjected to 100, 200, 300, 400, 500 and 600 mM NaCl for 28 days. The plant growth was steadily increased up to 500 mM NaCl stress at 28 days. TWC was higher in 300 mM NaCl treated leaves than that of 600 mM NaCl. Salinity stress induced the accumulation of osmolyte concentration when compared to control during the study period. The antioxidant enzymes PPO, CAT and SOD were increased under salinity.  相似文献   

12.
The present study aimed to elucidate the effectiveness of inorganic element composition (except for calcium and phosphorus) of bone powder (BP) on some morphological (root and shoot length and dry weight) and biochemical (protein, sugar, chlorophyll, and inorganic element contents) parameters in bean seedlings. For this, BP was compared with calcium phosphate (CP), which is used as calcium and phosphorus source. Bone powder solutions (BPS) (0.5, 1, 1.5, and 2%) and CP solution (0.1 M) were applied to growing media of 12-day bean seedlings. Seedlings were harvested on 20th day. Both BPS and CP treatments significantly stimulated plant growth and increased dry weight, pigment, protein, and sugar contents compared to control seedlings; however, BPS treatments were found to be more effective than CP treatment. The best stimulatory effect on plant growth was determined at 1.5% concentration of BPS. Besides, BP treatment significantly increased contents of K, S, Fe, Zn, Mg, Mn, and Cu compared to control and CP-treated seedlings. This result clearly elucidated that the other elements existing in structure of BP also participated in plant structure, and they played important roles on growth and development in bean seedlings. It is possible to say that BP

may be used as an important source of the other inorganic elements as well as Ca and P in agriculture studies for improving of plant growth and productivity. This is the first report revealing the effect of BP on inorganic element content of plants.  相似文献   

13.
In order to understand the molecular basis of salt stress response, a proteomic approach, employing two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), was used to identify proteins affected by salinity in wheat (Triticum durum ‘Ofanto’). Identification of proteins, whose levels were altered, was performed by comparing protein patterns of salt-treated and control plants. A set of control plants was grown without NaCl addition under the same conditions as the salt-treated plants. Proteins were extracted from the leaves of untreated and NaCl-treated plants, and resolved using 24-cm immobilized pH gradient strips with a pH 4–7 linear gradient in the first dimension and a 12.5% sodium dodecyl sulphate polyacrylamide gel electrophoresis in the second dimension; the gels were stained with Coomassie and image analysis was performed. Quantitative evaluation, statistical analyses and MALDI-TOF MS characterization of the resolved spots in treated and untreated samples enabled us to identify 38 proteins whose levels were altered in response to salt stress. In particular, ten proteins were downregulated and 28 were upregulated. A possible role of these proteins in response to salinity is discussed.  相似文献   

14.
Plasma Chemistry and Plasma Processing - The impacts of a low temperature plasma treatment on wheat seed germination and field growth were investigated using a plasma system about the first...  相似文献   

15.
By using an in vivo hydroponic rice seedling culture system, we investigated the physiological and biochemical responses of a model rice japonica cultivar Nipponbare to salt stress using proteomics and classical biochemical methods. Yoshida's nutrient solution (YS) was used to grow rice seedlings. YS-grown 18-day-old seedlings manifested highly stable and reproducible symptoms, prominently the wilting and browning of the 3rd leaf, reduced photosynthetic activity, inhibition in overall seedling growth, and failure to develop new (5th) leaf, when subjected to salt stress by transferring them to YS containing 130 mM NaCl for 4 days. As leaf response to salt stress is least investigated in rice by proteomics, we used the 3rd leaf as source material. A comparison of 2-DE protein profiles between the untreated control and salt-stressed 3rd leaves revealed 55 differentially expressed CBB-stained spots, where 47 spots were increased over the control. Of these changed spots, the identity of 33 protein spots (27 increased and 5 decreased) was determined by nESI-LC-MS/MS. Most of these identified proteins belonged to major metabolic processes like photosynthetic carbon dioxide assimilation and photorespiration, suggesting a good correlation between salt stress-responsive proteins and leaf morphology. Moreover, 2-DE immunoblot and enzymatic activity analyses of 3rd leaves revealed remarkable changes in the key marker enzymes associated with oxidative damage to salt stress: ascorbate peroxidase and lipid peroxidation were induced, and catalase was suppressed. These results demonstrate that hydroponic culture system is best suited for proteomics of salt stress in rice seedling.  相似文献   

16.
Colombia is the main producer of cape gooseberry (Physalis peruviana L.), a plant known for its various consumption practices and medicinal properties. This plant is generally grown in eroded soils and is considered moderately tolerant to unfavorable conditions, such as nutrient-poor soils or high salt concentrations. Most studies conducted on this plant focus on fruit production and composition because it is the target product, but a small number of studies have been conducted to describe the effect of abiotic stress, e.g., salt stress, on growth and biochemical responses. In order to better understand the mechanism of inherent tolerance of this plant facing salt stress, the present study was conducted to determine the metabolic and growth differences of P. peruviana plants at three different BBCH-based growth substages, varying salt conditions. Hence, plants were independently treated with two NaCl solutions, and growth parameters and LC-ESI-MS-derived semi-quantitative levels of metabolites were then measured and compared between salt treatments per growth substage. A 90 mM NaCl treatment caused the greatest effect on plants, provoking low growth and particular metabolite variations. The treatment discrimination-driving feature classification suggested that glycosylated flavonols increased under 30 mM NaCl at 209 substages, withanolides decreased under 90 mM NaCl at 603 and 703 substages, and up-regulation of a free flavonol at all selected stages can be considered a salt stress response. Findings locate such response into a metabolic context and afford some insights into the plant response associated with antioxidant compound up-regulation.  相似文献   

17.
Plasma medicine is a new field focusing on biomedical and clinical applications of cold gas plasmas, including their anticancer effects. Cold plasmas can be applied directly or indirectly as plasma-activated liquids (PAL). The effects of plasma-activated cell growth medium (PAM) and plasma-activated phosphate buffered saline (PAPBS) were tested, using a plasma pen generating streamer corona discharge in ambient air, on different cancer cell lines (melanoma A375, glioblastoma LN229 and pancreatic cancer MiaPaCa-2) and normal cells (human dermal fibroblasts HDFa). The viability reduction and apoptosis induction were detected in all cancer cells after incubation in PAL. In melanoma cells we focused on detailed insights to the apoptotic pathways. The anticancer effects depend on the plasma treatment time or PAL concentration. The first 30 min of incubation in PAL were enough to start processes leading to cell death. In fibroblasts, no apoptosis induction was observed, and only PAPBS, activated for a longer time, slightly decreased their viability. Effects of PAM and PAPBS on cancer cells showed selectivity compared to normal fibroblasts, depending on correctly chosen activation time and PAL concentration, which is very promising for potential clinical applications. This selectivity effect of PAL is conceivably induced by plasma-generated hydrogen peroxide.  相似文献   

18.
Air atmospheric dielectric barrier discharge plasma (DBD) was attempted to pretreat wheat seed to improve its germination and growth in this study. The effects of the DBD plasma treatment on the wheat seed germination, seedling growth, osmotic-adjustment products, lipid peroxidation level, and antioxidant enzymes activity were investigated. The experimental results showed that the DBD plasma treatment with an appropriate time scale could promote the wheat seed germination and seedling growth. The germination potential, germination rate, germination index, and vigor index increased by 26.7, 9.1, 16.9, and 46.9% after 7 min’s DBD plasma treatment, respectively; the root length, shoot length, fresh weight, and dry weight of the seedlings also increased after the DBD plasma treatment. The osmotic-adjustment products, proline and soluble sugar contents, in the wheat seedlings were significantly enhanced after the DBD plasma treatment with an appropriate time scale, while the malondialdehyde content decreased. Moreover, the activities of superoxide dismutase and peroxidase also increased after the DBD plasma treatment. The DBD plasma treatment led to etching effect on the wheat seed coat, resulting in the improvement of its water absorption capacity.  相似文献   

19.
Combined enhanced UV‐B radiation and drought may induce different morphological and physiological alterations in plants than either abiotic stress alone. We evaluated morphology, biomass, and primary and secondary metabolism changes in seedlings of two common bean cultivars, IAC Imperador (drought‐resistant) and IAC Milênio. To test the hypothesis that cultivars responded differently to combined stresses in a controlled environment, seedlings of the examined been cultivars were exposed to UV‐B and/or drought treatments for three weeks. The cultivars behaved differently, especially to the drought treatment, suggesting that they use different mechanisms to cope with unfavorable environmental conditions. IAC Imperador showed a stronger protective response, modifying wax composition and primary metabolism, and improving its resistance to UV‐B radiation. For IAC Imperador, the accumulation of cuticular wax and alkane was higher under combined stress but production of primary alcohols was reduced, suggesting a possible fatty acyl switch. Root/shoot length and biomass ratios increased in both cultivars, particularly for the combined stress, indicating a common plant response. We show that these two bean cultivars responded more strongly to UV‐B and combined stress than drought alone as evident in changes to their chemistry and biology. This shows the importance of investigating plant morphological and physiological responses to combined stress.  相似文献   

20.
Climate change, environmental pollution and associated abiotic stresses are beginning to meaningfully affect agricultural production worldwide. Salt stress is, however, one of the most important threats that significantly impairs plant growth and development. Plants in their early growth stages such as seed germination, seed emergence and early seedling growth are very sensitive to salt stress. Among the range of sustainable techniques adopted to improve seed germination and early plant growth is seed priming; however, with the use of ecofriendly substances, this is one of the most effective and economically viable techniques to improve seed tolerance against such environmental stresses. For instance, priming with appropriate non-synthetic compounds including microbial biostimulants are prominent ways to sustainably address these challenges. Therefore, in this research, by using the “priming technique”, two biostimulants were tested for their potential as sustainable approaches to improve canola and soybean seed germination under salt stress and optimal growth conditions. Canola and soybean seeds were primed with flavonoids extracted from citrus fruits (flavopriming) and cell-free supernatant (CFS; produced by a novel strain of Devosia sp.—SL43), alone and in combination, and exposed to low–higher levels of salt stress and ideal growth conditions. Both biostimulants showed promising effects by significantly improving seed germination of soybean and canola under both ideal and stressful conditions. However, increases in seed germination were greater under salinity stress as flavonoids and CFS with stress amelioration effects showed substantial and statistically significant improvements in seed germination under varying levels of salt stress. In addition, combinations (mixtures) of both biostimulants were tested to determine if their effects might be more additive or multiplicative than the individual applications. However, results suggested incompatibility of both biostimulants as none of the combinations showed better results than that of the individual applications of either flavonoids or CFS. Conceivably, the use of flavonoids and this novel Devosia sp. CFS could be significant plant growth enhancers, perhaps much better than the few other biostimulants and bacterial-based compounds currently in use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号