首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet fluorescence of Nd3+ ions induced by triphotonic excitation process was studied in Nd-doped LiYF4, LiLuF4 and BaY2F8 crystals using a technique of time-resolved spectroscopy. The observed ultraviolet luminescence was due to transitions between the bottom of 4f25d configuration and 4f3 states of Nd3+ ions. Narrow emission lines superposed to the broadband emissions were observed. A detailed analysis of luminescence spectrum revealed that the narrow emissions are due to parity and spin allowed radiative transitions from the Stark levels of 4K11/2(5d) state created by the electrostatic interaction between the 5d electron and the two electrons of the 4f2 configuration. The narrow emissions are related to the high spin state (S=3/2) which gives f-f characteristics to the f-d broadband emissions. The narrow emissions superposed to the wide emission correspond to 18%, 34% and 43% of the integrated broadband emission at 262 nm observed in LiYF4, LiLuF4 and BaY2F8 crystals, respectively. Although the 5d-4f2 interaction is observed to be weaker than 5d-crystal field interaction, it is stronger enough to select only the radiative transitions from 4f25d configuration to 4f3 states that preserves the total spin S=3/2.  相似文献   

2.
The photoluminescence and excitation spectra of Pr3+ activated LiLaP4O12 has been investigated in the 10-300 K temperature region. At all temperatures, the luminescence consists of optical transitions emanating from both the Pr3+ 4f15d1 and the 1S0 states. However, at low temperatures the emission spectrum is dominated by the intraconfiguration emission transitions emanating from the Pr3+1S0 state. With increasing temperature, there is an exchange of intensity between the two emitting states; emission transitions from the 1S0 state exhibit strong intensity quenching while the 4f15d1→4f2 emission transitions reveal intensity gain. These results are explained on the basis of thermal population of the 4f15d1 state by the 1S0 state. The energy barrier of 0.05 eV (403 cm−1) for the nonradiative process is determined from the temperature dependence of the 1S0 lifetime.  相似文献   

3.
Green phosphor compositions MgxSr1−xAl2O4:Eu, Nd (with x=0.05-0.25) were prepared by solid state reaction method. The effect of Mg substitution on photoluminescence characteristics was investigated. The photoluminescence show intense green emission for MgSrAl2O4:Eu2+, Nd3+ with long persistence. This green emission corresponds to transitions from 4f65d1 to 4f7 of Eu2+ ion. Comparative analysis of the excitation and emission spectra were used to evaluate the crystal field splitting of the 5d states of Eu2+ and the parameters of electron-vibrational interaction, such as Huang-Rhys factor, effective phonon energy, and zero-phonon line position.  相似文献   

4.
CaAl2O4:Eu2+ co-doped with varying concentrations of Er3+ was prepared by solid-state reaction method. Prepared materials with 1 mol% Eu2+ and 2-10 mol% of Er3+ were investigated for their photoluminescence properties. Phase, morphology and crystalline structure were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Broad band UV-excited luminescence was observed for CaAl2O4:Eu2+, Er3+ in the blue region (λmax=440 nm) due to transitions from 4f65d1 to the 4f7 configuration of the Eu2+ ion. The Er3+ ion co-doping generates deep traps, which results in longer decay time for phosphorescence.  相似文献   

5.
Absorption and fluorescence spectra observed between 450 and 750 nm at 85 K and room temperature (300 K) are reported for Eu3+(4f6) in single-crystal Czochralski-grown garnet, Gd3Ga5O12 (GGG). The spectra represent transitions between the 2S+1LJ multiplets of the 4f6 electronic configuration of Eu3+ split by the crystal field of the garnet. In absorption, Eu3+ transitions are observed from the ground state, 7F0, and the first excited multiplet, 7F1, to multiplet manifolds 5D0, 5D1, and 5D2. The Stark splitting of the 7FJ multiplets (J=0-6) was determined by analyzing the fluorescence transitions from 5D0, 5D1, and 5D2 to 7FJ. The Eu3+ ions replace Gd3+ ions in sites of D2 symmetry in the lattice during crystal growth. Associated with each multiplet manifold are 2J+1 non-degenerate Stark levels characterized by one of four possible irreducible representations (irreps) assigned by an algorithm based on the selection rules for electric-dipole (ED) and magnetic-dipole (MD) transitions between Stark levels in D2 symmetry. The quasi-doublet in 5D1 was characterized by an analysis of the magneto-optical spectra obtained from the transitions observed between 5D1 and 7F1. A parameterized Hamiltonian defined to operate within the entire 4f6 electronic configuration of Eu3+ was used to model the experimental Stark levels and their irreps. The crystal-field parameters were determined through use of a Monte-Carlo method in which nine independent crystal-field parameters, were given random starting values and optimized using standard least-squares fitting between calculated and experimental levels. The final fitting standard deviation between 57 calculated-to-experimental Stark levels is 5.9 cm−1. The choice of coordinate system, in which the nine are real and the crystal-field z-axis is parallel to the [0 0 1] crystal axis and perpendicular to the xy plane, is identical to the choice we used previously in analyzing the spectra of Er3+ and Ho3+ garnets.  相似文献   

6.
Spectroscopic investigations were performed on a single crystal of CaF2 doped with 0.05% Pr3+. Three different Pr3+ sites with different luminescent properties were identified. The 4f2 →4f15d1 excitation spectrum of the first site has a sharp maximum at 221.3 nm. Excitation in the 4f5d bands of this site yields strong 4f5d emissions in the UV/VIS part of the spectrum and also weaker intraconfigurational 4f2 emissions. By comparing the intraconfigurational 4f emissions and their decay times with data from the literature, these 4f5d bands are assigned to transitions on Pr3+ ions on a site with C4V symmetry. The fd excitation spectrum of the second site has a zero phonon line at 223.3 nm. Upon selective excitation in this band, only 4f5d emission is observed. Probably, these 4f5d bands correspond to Pr3+ ions on a Oh site. The third set of 4f5d bands has a 4f5d onset at 208 nm. By comparison of the luminescence spectra of the intraconfigurational 4f2 transitions with literature data, these transitions are assigned to Pr3+ on an L site. Excitation in these 4f5d band yields 1S0 emission followed by emission from the 3P0 state. The present results clarify some contradictions reported in the literature.  相似文献   

7.
The X-ray excited optical luminescence spectrum of Pr3+ in YPO4 was investigated. In addition to the sharp line f-f transitions involving the energy levels of the 4f2 configuration of Pr3+ ion, the spectrum contains some broad groups of fluorescence lines in the ultraviolet and blue region. These groups of fluorescence are attributed to transitions from the lowest 4fI5d state at 43050 cm-1 to the 4f2 levels of the Pr3+ion in YPO4.  相似文献   

8.
We report on observation of upconverted VUV luminescence due to 5d-4f radiative transitions in Er3+ and Nd3+ ions doped into some fluoride crystals, under excitation by ArF and KrF excimer lasers, respectively. Only spin-forbidden 5d-4f luminescence of Er3+ (at 165 nm) was detected from the LiYF4:Er3+ crystal whereas both spin-forbidden (at 169 nm) and spin-allowed (at 160.5 nm) components are observed from the BaY2F8:Er3+ crystal, the latter being much weaker than in the case of one-photon excitation. Nd3+ 5d-4f luminescence at 180 and 173 nm has been detected from the LiYF4:Nd3+ and LaF3:Nd3+ crystals, respectively. The shift of short-wavelength edge of 5d-4f emission spectra towards longer wavelengths is observed under temperature increase from 15 to 293 K. The observed effects in the spectra of Er3+ and Nd3+ doped crystals were interpreted as a result of reabsorption of 5d-4f luminescence escaping from the bulk of the crystals.  相似文献   

9.
Ce3+ and Tb3+ co-doped Sr2B5O9Cl phosphors with intense green emission were prepared by the conventional high-temperature solid-state reaction technique. A broad band centered at about 315 nm was found in phosphor Sr2B5O9Cl: Ce3+, Tb3+ excitation spectrum, which was attributed to the 4f-5d transition of Ce3+. The typical sharp line emissions ranging from 450 to 650 nm were originated from the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. The photoluminescence (PL) intensity of green emission from Tb3+ was enhanced remarkably by co-doping Ce3+ in the Tb3+ solely doped Sr2B5O9Cl phosphor because of the dipole-dipole mechanism resonant energy transfer from Ce3+ to Tb3+ ions. The energy transfer process was investigated in detail. In light of the energy transfer principles, the optimal composition of phosphor with the maximum green light output was established to be Sr1.64Ce0.08Tb0.1Li0.18B5O9Cl by the appropriate adjustment of dopant concentrations. The PL intensity of Tb3+ in the phosphor was enhanced about 40 times than that of the Tb3+ single doped phosphor under the excitation of their optimal excitation wavelengths.  相似文献   

10.
The phosphorescence and excitation spectra of Mn ions in the ordered and disordered phases of LiAl5O8 have been measured. In both phases Mn2+ ions substitute for Al3+ ions in two different tetrahedral sites of the LiAl5O8 lattice. In both sites in the ordered phase, sharp zero-phonon transitions have been observed in the low temperature phosphorescence and excitation spectra - these transitions were considerably broadened in the disordered phase due to crystal field inhomogeneity in that phase. The deviation from neutrality caused by the Mn2+ ions in the ordered phase is largely compensated by Mn4+ ions occupying octahedral Al3+ sites. On disordering, a large proportion of Mn4+ is reduced to Mn2+, while the remainder takes up a site with a higher proportion of Li+ ions as next nearest neighbours. This leads to an increase in the ionicity of the Mn4+ site in the disordered phase and hence to a larger value of the Racah parameter B.  相似文献   

11.
The ν2 + ν3 bands of 12CH4 and 13CH4 occurring in the region 4400–4650 cm?1 have been studied from spectra recorded with a high-resolution Fourier transform spectrometer (resolution better than 0.01 cm?1). Champion's Hamiltonian expansion, Canad. J. Phys.55, 1802 (1977), is applied to the problem of the two interacting F1 and F2 vibrational sublevels of this type of a band. As the P branch of ν2 + ν3 is strongly overlapped by neighboring bands, a combination-difference method, adapted to tetrahedral XY4 molecules has been developed to help assignments of lines. A fit of 700 transitions has been performed using 13 new effective constants in the case of 12CH4. In the case of 13CH4, 532 transitions have been fit to 18 constants. The known parameters, relative to the vibrational ground state and the ν3 state for both methanes, and the ν2 state for 12CH4 were fixed throughout. Most of the perturbed levels, up to J′ = 12, are well reproduced and the general agreement between experimental and calculated transitions is satisfactory with standard deviations of 0.047 cm?1 (12CH4) and 0.041 cm?1 (13CH4). The results (order of magnitude of obtained (ν2 + ν3) parameters and comparison of observed and computed intensities) indicate that the ν2 + ν3 band is perturbed by many other bands.  相似文献   

12.
For LiYF4:Ce3+, LiLuF4:Ce3+ and LuF3:Ce3+ crystals UV/visible emission and time-resolved VUV/UV excitation spectra were recorded at liquid helium temperature with spectral resolution of 0.1 nm for excitation spectra and better than 0.3 nm for emission spectra. Well resolved fine structures due to zero-phonon lines were clearly observed in both excitation and emission spectra for LiYF4:Ce3+ and LiLuF4:Ce3+. For LuF3:Ce3+ crystal no fine structure was detected in the spectra even at the highest spectral resolution. Under the host excitation, the fine structure for high-energy emission band of Ce3+ (5d-2F5/2) in LiLuF4:Ce3+ becomes well pronounced because of weaker reabsorption effect, as compared to Ce3+ 4f-5d absorption, due to small penetration depth for exciting radiation. As a result the crystal-field splitting for 2F7/2 and 2F5/2 levels of Ce3+ in LiLuF4 crystal was measured. First observation of zero-phonon lines at ∼81,550 and ∼82,900 cm−1 as well as vibronic side bands due to interconfigurational 4f14-4f135d transitions in Lu3+ is reported for excitation spectrum of LiLuF4:Ce3+.  相似文献   

13.
刘峰  张家骅  吕少哲  王笑军 《物理学报》2006,55(11):6020-6024
对SrAl12O19:Pr3+中4f2→4f2电偶极跃迁强度的参量化进行了研究.考虑明确的4f5d组态成分与4f2跃迁能级混杂对4f2组态内跃迁的影响.引入新的强度参数Tkq,参数值由3P0能级的相关实验数据拟合.利用拟合的参数T33T53计算1S0向下各能级发射的跃迁强度,计算值与实验及Judd-Ofelt理论的结果进行了比较. 关键词: 12O19:Pr3+')" href="#">SrAl12O19:Pr3+ 宇称态混杂 4f5d组态 强度参数  相似文献   

14.
The results of measuring the efficiencies of the formation of electronically excited states of the Ln3+ lanthanide ions in aqueous solutions in the processes of radioluminescence and multibubble sonoluminescence are analyzed. In both cases, electronic excitation occurs due to inelastic collisions of Ln3+ ions with (for radioluminescence) charged ionizing particles in liquid and (for multibubble sonoluminescence) high-energy particles, primarily electrons, in the gas phase of cavitation bubbles. In both processes, the efficiencies of exciting ions whose luminescence states appear in the 4f-5d transitions (Ce3+ and Pr3+) are significantly lower (by an order of magnitude or larger) than the efficiencies of exciting ions whose luminescence states appear in the 4f-4f transitions (Gd3+ and Tb3+). Therefore, the probability of the f-d transitions is lower than the probability of the f-f transitions in lanthanide ions excited by collisions with the charged particles and the relative probabilities of these transitions are inverted in these processes as compared to photoexcitation. Original Russian Text ? G.L. Sharipov, 2007, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 85, No. 9, pp. 559–562.  相似文献   

15.
The luminescence properties of Ce3+ in La3F3[Si3O9] are reported. Excitation and emission bands corresponding to 4f1→5d1 transitions of Ce3+ were identified. The center of gravity of the 5d states lies at remarkable high energy (43.2×103 cm−1) for Ce3+ in a silicate compound. This high value is attributed to the combined oxygen/fluoride coordination of the Ce3+ ion. Emission from the lowest 4f5d level to the 2F5/2 and 2F7/2 levels was found at 32.4×103 and 30.4×103 cm−1. These results are compared with literature data on silicates and fluorides. From the values found for Ce3+, predictions are made for the positions of the 4f5d bands of Pr3+ and Er3+ in La3F3[Si3O9]. For both ions, it is concluded that in this host lattice emission is expected from high lying 4fn energy levels.  相似文献   

16.
The luminescent characteristics of Pr3+-activated LaAlGe2O7 were investigated. In response to excitement using 448 nm blue light, the emission spectra involved most of the 3P03HJ transitions. The dominant emission came from the 3P03H4 transition at 487 nm. 1D2 fluorescence quenching was observed in highly doped samples and is related to the cross-relaxation processes among neighboring Pr3+ ions. In contrast with conventional Pr3+-activated phosphors, the extraordinary excitation spectra showed only intense f-f transition of Pr3+ ions, while the 4f-5d transition was eliminated. This is ascribed to photoionization. By analyzing absorption and excitation spectra, it is recognized that no efficient energy transfer occurs between Pr3+ and the host lattice in LaAlGe2O7.  相似文献   

17.
A complete set of electron-excited 4d-basedAuger spectra of the lanthanide metals from lanthanum to lutetium (except the unstable promethium) is presented, in both differential and integral forms. It is believed that the set is more representative of clean surfaces of the lanthanides than any published hitherto. With the help of binding energy and electron loss measurements made in this laboratory and elsewhere, values of the various possible Auger, Coster—Kronig, and direct recombination transition energies are calculated, and for each transition a “centre of gravity” is derived based on relative intensities of final state multiplets, electron occupation of core levels, etc. By using arguments based on trends in the spectra across the series, on theoretically and experimentally derived values of Ueff for the difference 4fn+1→4fn?1, and on plausibility, values of Ueff for 4fn→ 4fn?2 as well as for the other final state hole pair configurations are allocated. The relaxed transition energies so calculated are then compared with the experimental energies, from which it is possible in most cases to make assignment of the spectral features to the various transitions. As a result it is found that there are some significant disagreements with the theoretical rates of McGuire for lanthanide free atoms. The reasons for these disagreements are discussed, and an empirical model based on effective 4f and 5d populations and on the restrictions imposed by spin alignment is used to resolve the differences qualitatively.  相似文献   

18.
Nonradiative decay from 4fn?1 5d states was investigated for trivalent rare earths in Y3Al5O12. The rates of both 5d→4f and 5d→5d transitions were determined from measurements of the lifetimes and intensities of 5d fluorescence from Ce3+ and Pr3+. Because of the stronger ion-lattice coupling, nonradiative decay rates for transitions involving 5d states are much faster than those between 4f states. Decay rates are dependent upon the temperature and the energy gap to the next-lower level. The temperature dependences of the 5d fluorescence lifetimes from 77 to 700°K are reported.  相似文献   

19.
The superposition model is used to obtain a new identification of the 5d levels in Ce3+: YPO4, resulting in a revised parametrization of the 5d crystal field. Electrostatic and pseudo-potential models are employed to relate these parameters to those obtained from 4f crystal field splittings.  相似文献   

20.
Luminescence and reflection spectra as well as luminescence kinetics of the 1 mol% Sm3+-doped crystalline lanthanum magnesium meta borate (LaMgB5O10) and gadolinium magnesium meta borate (GdMgB5O10) were analyzed. Materials were synthesized by conventional solid state route and showed bright orange-red emission under UV excitation. Emission spectra contain sharp and well resolved Sm3+4G5/26HJ transitions indicating a strong crystal-field effect. In case of gadolinium compound energy transfer between Gd3+ and Sm3+ was detected. The luminescent kinetics of the Sm3+ in analyzed powders is characterized by single exponential decay and experimental values vary in the range 2.2-2.4 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号