首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, we have implemented the three methods namely extended \((G^{\prime}/G)\)-expansion, extended \((1/G^{\prime})\)-expansion and \((G^{\prime}/G,\,\,1/G)\)-expansion methods to determine exact solutions for the (2 + 1) dimensional generalized time–space fractional differential equations. We use Conformable fractional derivative and its properties in this research to convert fractional differential equations to ordinary differential equations with integer order. By using above mentioned methods, three types of traveling wave solutions are successfully obtained which have been expressed by the hyperbolic, trigonometric, and rational function solutions. The considered methods and transformation techniques are efficient and consistent for solving nonlinear time and space-fractional differential equations.  相似文献   

2.
In this article, a variety of solitary wave solutions are found for some nonlinear equations. In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into the corresponding partial differential equation and the rational exp (?φ(η))-expansion method is implemented to find exact solutions of nonlinear equation. We find hyperbolic, trigonometric, rational and exponential function solutions using the above equation. The results of various studies show that the suggested method is very effective and can be used as an alternative for finding exact solutions of nonlinear equations in mathematical physics. A comparative study with the other methods gives validity to the technique and shows that the method provides additional solutions. Graphical representations along with the numerical data reinforce the efficacy of the procedure used. The specified idea is very effective, pragmatic for partial differential equations of fractional order and could be protracted to other physical phenomena.  相似文献   

3.
The paper deals with the Tzitzéica type nonlinear evolution equations arising in nonlinear optics and their new exact solutions. First, through the use of the Painlevé transformation and Lie symmetry method, the Tzitzéica, Dodd–Bullough–Mikhailov, and Tzitzéica–Dodd–Bullough equations are converted to nonlinear ordinary differential equations (NODEs), and then, a modified version of the improved \(\tan \left( {\varPhi \left( \xi \right)/2} \right)\)-expansion method, proposed by the authors, is adopted to generate new exact solutions of the reduced equations. The method truly recommends a reliable and capable technique to produce new exact solutions of a variety of nonlinear partial differential equations (NPDEs).  相似文献   

4.
Motivated by the widely used ansätz method and starting from the modified Riemann-Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.  相似文献   

5.
In this paper, we find exact solutions of some nonlinear evolution equations by using generalized tanh–coth method. Three nonlinear models of physical significance, i.e. the Cahn–Hilliard equation, the Allen–Cahn equation and the steady-state equation with a cubic nonlinearity are considered and their exact solutions are obtained. From the general solutions, other well-known results are also derived. Also in this paper, we shall compare the generalized tanh–coth method and generalized (G /G )-expansion method to solve partial differential equations (PDEs) and ordinary differential equations (ODEs). Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important roles in engineering fields. The generalized tanh–coth method was used to construct periodic wave and solitary wave solutions of nonlinear evolution equations. This method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that the generalized tanh–coth method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear problems.  相似文献   

6.
7.
In this paper, the authors have established the \(\left( G^{\prime }/G\right)\)-expansion method to find exact solutions for conformable time fractional generalized seventh-order KdV equation (FGKdV7). This method is an effective method in finding exact traveling wave solutions of nonlinear evolution equations in mathematical physics. The effectiveness of this manageable method has been shown by applying it to several particular cases of the FGKdV7. The present approach has the potential to be applied to other nonlinear fractional differential equations. All of the numerical calculations in the present study have been performed on a PC applying some programs written in Mathematica.  相似文献   

8.
In this article,we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations.We use the improved(G’/G)-expansion function method to calculate the exact solutions to the time-and space-fractional derivative foam drainage equation and the time-and space-fractional derivative nonlinear KdV equation.This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.  相似文献   

9.
In this paper, we establish exact solutions for some special nonlinear partial differential equations. The (G′/G)-expansion method is used to construct travelling wave solutions of the two-dimensional sine-Gordon equation, Dodd–Bullough–Mikhailov and Schrödinger–KdV equations, which appear in many fields such as, solid-state physics, nonlinear optics, fluid dynamics, fluid flow, quantum field theory, electromagnetic waves and so on. In this method we take the advantage of general solutions of second-order linear ordinary differential equation (LODE) to solve many nonlinear evolution equations effectively. The (G′/G)-expansion method is direct, concise and elementary and can be used with a wider applicability for handling many nonlinear wave equations.  相似文献   

10.
In this paper, the sine–cosine method is employed to construct exact solutions of the space-time fractional (\(1+1\))-dimensional nonlinear Schrödinger models. Many new families of exact traveling wave solutions of these models are successfully obtained. It is shown that the proposed method provides a more powerful mathematical tool for solving nonlinear space-time fractional evolution equations in mathematical physics.  相似文献   

11.
In this paper, a new approach, namely an ansatz method is applied to find exact solutions for nonlinear fractional differential equations in the sense of modified Riemann–Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to solve the fractional-order biological population model and the space–time fractional modified equal width equation, and as a result, some dark soliton solutions for them are established.  相似文献   

12.
Under investigation in this work is a (\(2+1\))-dimensional the space–time fractional coupled nonlinear Schrödinger equations, which describes the amplitudes of circularly-polarized waves in a nonlinear optical fiber. With the aid of conformable fractional derivative and the fractional wave transformation, we derive the analytical soliton solutions in the form of rational soliton, periodic soliton, hyperbolic soliton solutions by four integration method, namely, the extended trial equation method, the \(\exp (-\,\Omega (\eta ))\)-expansion method and the improved \(\tan (\phi (\eta )/2)\)-expansion method and semi-inverse variational principle method. Based on the the extended trial equation method, we derive the several types of solutions including singular, kink-singular, bright, solitary wave, compacton and elliptic function solutions. Under certain condition, the 1-soliton, bright, singular solutions are driven by semi-inverse variational principle method. Based on the analytical methods, we find that the solutions give birth to the dark solitons, the bright solitons, combine dark-singular, kink, kink-singular solutions with fractional order for nonlinear fractional partial differential equations arise in nonlinear optics.  相似文献   

13.
A improvement of the expansion methods, namely, the improved \(\tan (\phi (\xi )/2)\)-expansion method for solving the sixth-order thin-film equation is proposed. As a result, many new and more general exact traveling wave solutions are obtained including singular kink-type solutions. We obtained the further solutions comparing with other methods as Flitton and King (Eur J Appl Math 15:713–754, 2004) and Taha et al. (J King Saud Univ Sci 26:75–78, 2014). Recently this method is developed for searching exact traveling wave solutions of nonlinear partial differential equations. Abundant exact traveling wave solutions including kink and rational solutions have been found. These solutions might play important role in engineering and physics fields. Also the results demonstrate that the introduced method is powerful tools for solving the nonlinear partial differential equations.  相似文献   

14.
In this paper, the (G'/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.  相似文献   

15.
Hang Xu  Jie Cang 《Physics letters. A》2008,372(8):1250-1255
The time fractional wave-like differential equation with a variable coefficient is studied analytically. By using a simple transformation, the governing equation is reduced to two fractional ordinary differential equations. Then the homotopy analysis method is employed to derive the solutions of these equations. The accurate series solutions are obtained. Especially, when ?f=?g=−1, these solutions are exactly the same as those results given by the Adomian decomposition method. The present work shows the validity and great potential of the homotopy analysis method for solving nonlinear fractional differential equations. The basic idea described in this Letter is expected to be further employed to solve other similar nonlinear problems in fractional calculus.  相似文献   

16.
In this paper, exponential rational function method is applied to obtain analytical solutions of the space–time fractional Fokas equation, the space–time fractional Zakharov Kuznetsov Benjamin Bona Mahony, and the space–time fractional coupled Burgers’ equations. As a result, some exact solutions for them are successfully established. These solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie’s modified Riemann–Liouville sense. The exact solutions obtained by the proposed method indicate that the approach is easy to implement and effective.  相似文献   

17.
In this paper, the Lie group classification method is performed on the fractional partial differential equation (FPDE), all of the point symmetries of the FPDEs are obtained. Then, the symmetry reductions and exact solutions to the fractional equations are presented, the compatibility of the symmetry analysis for the fractional and integer-order cases is verified. Especially, we reduce the FPDEs to the fractional ordinary differential equations (FODEs) in terms of the Erdélyi-Kober (E-K) fractional operator method, and extend the power series method for investigating exact solutions to the FPDEs.  相似文献   

18.
In this paper, the ansatz method and the functional variable method are employed to find new analytic solutions for the space–time nonlinear fractional wave equation, the space–time fractional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation and the space–time fractional modified Korteweg–de Vries–Zakharov–Kuznetsov equation. As a result, some exact solutions are obtained in terms of hyperbolic and periodic functions. It is shown that the proposed methods provide a more powerful mathematical tool for constructing exact solutions for many other nonlinear fractional differential equations occurring in nonlinear physical phenomena. We have also presented the numerical simulations for these equations by means of three dimensional plots.  相似文献   

19.
In this study, the generalized \(\tan (\phi /2)\)-expansion method and He’s semi-inverse variational method (HSIVM) are applied to seek the exact solitary wave solutions for the resonant nonlinear Schrödinger equation with time-dependent coefficients. Using these methods, we investigate exact solutions for the nonlinear resonant Schrödinger equation with time-dependent coefficients two forms of nonlinearity, including power and dual-power law nonlinearity. Moreover, many new analytical exact solutions are obtained which are expressed by hyperbolic solutions, trigonometric solutions, and rational solutions. In addition, we obtained the bright soliton by HSIVM. These methods are powerful, efficient and those can be used as an alternative to establishing new solutions of different types of differential equations in mathematical physics and engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号